scholarly journals A statistical approach to quantify uncertainty in carbon monoxide measurements at the Izaña global GAW station: 2008–2011

2012 ◽  
Vol 5 (5) ◽  
pp. 6949-6989 ◽  
Author(s):  
A. J. Gomez-Pelaez ◽  
R. Ramos ◽  
V. Gomez-Trueba ◽  
P. C. Novelli ◽  
R. Campo-Hernandez

Abstract. Atmospheric CO in-situ measurements are carried out at the Izaña (Tenerife) global GAW mountain station using a RGA (Reduction Gas Analyser). In-situ measurements at Izaña are representative of the subtropical North-East Atlantic free troposphere, specially during the night period. We present the measurement system configuration, the response function, the calibration scheme, the data processing, the Izaña's 2008–2011 CO nocturnal time series, and the mean diurnal cycle by months. We have developed a rigorous uncertainty analysis for carbon monoxide measurements carried out at the Izaña station which could be applied to other GAW stations. We determine the combined standard uncertainty from four components of the measurement: uncertainty of the WMO standard gases interpolated over the range of measurement, the uncertainty that takes into account the agreement between the standard gases and the response function used, the uncertainty due to the repeatability of the injections, and the propagated uncertainty related to the response function parameters uncertainties (which also takes into account the covariance between the parameters). The mean value of the combined standard uncertainty decreased significantly after March 2009, from 2.37 nmol mol−1 to 1.66 nmol mol−1, due to improvements in the measurement system. A fifth type of uncertainty we call representation uncertainty is considered when some of the data necessary to compute exactly the mean are absent. Any computed mean has also a propagated uncertainty arising from the uncertainties of the data used to compute the mean. The law of propagation depends on the type of uncertainty component (random or systematic). In-situ hourly means are compared with simultaneous and collocated NOAA flask samples. The uncertainty in the differences is determined and whether these are significant. For 2009–2011, only 24.5% of the differences are significant, and 68% of the differences are between −2.39 and 2.5 nmol mol−1. Total and annual mean differences are computed using conventional expressions but also expressions with weights based on the minimum variance method. The annual mean differences for 2009–2011 are well within the ±2 nmol mol−1 compatibility goal of GAW.

2013 ◽  
Vol 6 (3) ◽  
pp. 787-799 ◽  
Author(s):  
A. J. Gomez-Pelaez ◽  
R. Ramos ◽  
V. Gomez-Trueba ◽  
P. C. Novelli ◽  
R. Campo-Hernandez

Abstract. Atmospheric CO in situ measurements are carried out at the Izaña (Tenerife) global GAW (Global Atmosphere Watch Programme of the World Meteorological Organization – WMO) mountain station using a Reduction Gas Analyser (RGA). In situ measurements at Izaña are representative of the subtropical Northeast Atlantic free troposphere, especially during nighttime. We present the measurement system configuration, the response function, the calibration scheme, the data processing, the Izaña 2008–2011 CO nocturnal time series, and the mean diurnal cycle by months. We have developed a rigorous uncertainty analysis for carbon monoxide measurements carried out at the Izaña station, which could be applied to other GAW stations. We determine the combined standard measurement uncertainty taking into consideration four contributing components: uncertainty of the WMO standard gases interpolated over the range of measurement, the uncertainty that takes into account the agreement between the standard gases and the response function used, the uncertainty due to the repeatability of the injections, and the propagated uncertainty related to the temporal consistency of the response function parameters (which also takes into account the covariance between the parameters). The mean value of the combined standard uncertainty decreased significantly after March 2009, from 2.37 nmol mol−1 to 1.66 nmol mol−1, due to improvements in the measurement system. A fifth type of uncertainty we call representation uncertainty is considered when some of the data necessary to compute the temporal mean are absent. Any computed mean has also a propagated uncertainty arising from the uncertainties of the data used to compute the mean. The law of propagation depends on the type of uncertainty component (random or systematic). In situ hourly means are compared with simultaneous and collocated NOAA flask samples. The uncertainty of the differences is computed and used to determine whether the differences are significant. For 2009–2011, only 24.5% of the differences are significant, and 68% of the differences are between −2.39 and 2.5 nmol mol−1. Total and annual mean differences are computed using conventional expressions but also expressions with weights based on the minimum variance method. The annual mean differences for 2009–2011 are well within the ±2 nmol mol−1 compatibility goal of GAW.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2014 ◽  
Vol 7 (7) ◽  
pp. 2283-2296 ◽  
Author(s):  
M. Schmidt ◽  
M. Lopez ◽  
C. Yver Kwok ◽  
C. Messager ◽  
M. Ramonet ◽  
...  

Abstract. Results from the Trainou tall tower measurement station installed in 2006 are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and radon-222 activity. Air is sampled from four sampling heights (180, 100, 50 and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53" N, 2°06'45" E, 131 m a.s.l.). The station is equipped with a custom-built CO2 analyser (CARIBOU), which is based on a commercial non-dispersive, infrared (NDIR) analyser (Licor 6252), and a coupled gas chromatography (GC) system equipped with an electron capture detector (ECD) and a flame ionization detector (FID) (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. The ultimately achieved short-term repeatability (1 sigma, over several days) for the GC system is 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) central laboratory for the same species as well for stable isotopes of CO2. The comparison between in situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.40 ppm for CO2, 0.7 ± 7.3 ppb for CH4, 0.6 ± 0.6 ppb for N2O, 0.01 ± 0.10 ppt for SF6, 1.5± 5.3 ppb for CO and 4.8± 6.9 ppb for H2 for the years 2008–2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr−1 for CO2, 4 ppb yr−1 for CH4, 0.78 ppb yr−1 for N2O and 0.29 ppt yr−1 for SF6. For all species, the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during nighttime whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.


2014 ◽  
Vol 7 (1) ◽  
pp. 569-604 ◽  
Author(s):  
M. Schmidt ◽  
M. Lopez ◽  
C. Yver Kwok ◽  
C. Messager ◽  
M. Ramonet ◽  
...  

Abstract. Results from the Trainou tall tower measurement station installed in 2006, are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and Radon-222 activity. Air is sampled from four sampling heights (180 m, 100 m, 50 m and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53'' N, 2°06'45'' E, 131 m a.s.l.). The station is equipped with a custom-build CO2 analyzer (CARIBOU), which is based on a commercial NDIR analyser (Licor 6252), and a coupled gas chromatographic GC system equipped with ECD and FID (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. After some initial problems, we achieved short-term repeatability (1 sigma, over several days) for the GC system of of 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in-situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the LSCE central laboratory for the same species as well for stable isotopes of CO2. The comparison between in-situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.4 ppm CO2, 0.69 ± 7.3 ppb CH4, 0.64 ± 0.62 ppb N2O, 0.01 ± 0.1 ppt SF6 and 1.5 ± 5.3 ppb CO for the years 2008–2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr−1 for CO2, 4 ppb yr−1 for CH4, 0.78 ppb yr−1 for N2O and 0.29 ppt yr−1 for SF6 respectively. For all species the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during night whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.


2012 ◽  
Vol 12 (5) ◽  
pp. 11151-11173
Author(s):  
B. Yao ◽  
M. K. Vollmer ◽  
L. X. Zhou ◽  
S. Henne ◽  
S. Reimann ◽  
...  

Abstract. In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) have been conducted at the Shangdianzi (SDZ) Global Atmosphere Watch (GAW) regional background station, China, from May 2010 to May 2011. The time series for 5 HFCs and 4 PFCs periodically showed high concentration events while background conditions occurred for 36% (HFC-32) to 83% (PFC-218) of all measurements. The mean mixing ratios during background conditions for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218 and PFC-318 were 24.5, 5.86, 9.97, 66.0, 9.77, 79.1, 4.22, 0.56, 1.28 ppt (parts per trillion, 10−12, molar), respectively. The background mixing ratios for the compounds at SDZ are consistent with those obtained at mid to high latitude sites in the Northern Hemisphere, except for HFC-32 and PFC-318 for which background mixing ratios were not reported in recent years. All HFCs and PFCs show positive trends at rates of 0.7, 1.4, 1.6, 4.1, 1.1, 0.43, 0.05, 0.01, 0.04 ppt yr−1 for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218 and PFC-318, respectively. North-easterly winds were connected with small contributions to atmospheric HFCs and PFCs loadings, whereas south-westerly advection (urban sector) showed increased loadings. Chinese emissions were estimated by a tracer ratio method using CO as tracer with rather well known emissions. The emissions, as derived from our measurement period, were 4.4 ± 0.7, 6.9 ± 0.9, 2.5 ± 0.3, 9.0 ± 1.3, 2.2 ± 0.4, 2.1 ± 0.3, 0.24 ± 0.06, 0.07 ± 0.04, 0.45 ± 0.09 kt yr−1 for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218, and PFC-318, respectively. The lower HFC-23 emissions compared to earlier studies may be a result of the HFC-23 abatement measures taken as part of the Clean Development Mechanism (CDM) project that started in 2005.


2021 ◽  
Vol 72 (3) ◽  
pp. 449
Author(s):  
Julie Salvetat ◽  
Anne Lebourges-Dhaussy ◽  
Paulo Travassos ◽  
Sven Gastauer ◽  
Gildas Roudaut ◽  
...  

Triggerfish are widely distributed in tropical waters where they play an important ecological role. The black triggerfish Melichthys niger may be the dominant species around oceanic tropical islands, whereas pelagic triggerfish, such as the ocean triggerfish Canthidermis sufflamen, can assemble around fish aggregating devices (FADs) where they are a common bycatch of tuna fisheries. In this study we combined acoustic and optical recordings to provide the first in situ target strength (TS) measurement of black and ocean triggerfish. Data were collected in the Archipelago of Fernando de Noronha off north-east Brazil. The mean TS of a 27.8-cm-long black triggerfish at 70 and 200kHz was –39.3dB re 1m2 (CV=14.0%) and –38.9dB re 1m2 (CV=14.4%) respectively. The mean TS values of ocean triggerfish (with a size range of 39–44cm) at 70 and 200kHz were –36.0dB re 1m2 (CV=15.7%) and –33.3dB re 1m2 (CV=14.0%) respectively. This work opens up the field for acoustic biomass estimates. In addition, we have shown that TS values for ocean triggerfish are within the same range as those of small tunas. Therefore, acoustic data transmitted from FADs equipped with echosounders can introduce a bias in tuna acoustic biomass estimation and lead to increased rates of bycatch.


2005 ◽  
Vol 127 (3) ◽  
pp. 604-610 ◽  
Author(s):  
F. Stern ◽  
A. Olivieri ◽  
J. Shao ◽  
J. Longo ◽  
T. Ratcliffe

A statistical approach for estimating intervals of certification or biases of facilities or measurement systems including uncertainties is set forth based on M×N-order level testing, which is defined as M repetitions of the same N-order level experiment in M different facilities or in the same facility with M different measurement systems. In the absence of reference values, the mean facility or measurement system is used for assessing intervals of certification or biases. Certification or biases of facilities or measurement systems are defined as processes for assessing probabilistic confidence intervals for facilities or measurement systems for specific tests, data reduction equations, conditions, procedures, and uncertainty analysis. Similarly, subgroup analysis is performed for isolating and assessing levels of differences due to use of different model sizes (scale effects) or measurement systems. An example is provided for towing tank facilities for resistance tests using standard uncertainty analysis procedures based on an international collaboration between three facilities. Although the number of facilities are at a minimum, the results demonstrate the usefulness of an approach and support recommendation of future collaborations between more facilities. Knowledge of intervals of certification or biases is important for design, accrediting facilities or measurement systems, and CFD validation.


2015 ◽  
Vol 54 (10) ◽  
pp. 2087-2097 ◽  
Author(s):  
Sujan Khanal ◽  
Zhien Wang

AbstractRemote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.


2006 ◽  
Vol 6 (11) ◽  
pp. 3211-3229 ◽  
Author(s):  
D. Schaub ◽  
K. F. Boersma ◽  
J. W. Kaiser ◽  
A. K. Weiss ◽  
D. Folini ◽  
...  

Abstract. Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and the ground-based NO2 profile is analysed by considering AK information. It is moderate and indicates similar shapes of the profiles for clear sky conditions. Only for large GOME columns, differences between the profile shapes explain the larger part of the relative difference. In contrast, the other error sources give rise to the larger relative differences found towards smaller columns. Further, for the clear sky cases, errors from different sources are found to compensate each other partially. The comparison for cloudy cases indicates a poorer agreement between the columns (n=60, R=0.61). The mean relative difference between the columns is 60% with a standard deviation of 118% and GOME on average overestimating the ground-based columns. The clear improvement after inclusion of AK information (n=60, R=0.87) suggests larger errors in the a priori NO2 profiles under cloudy conditions and demonstrates the importance of using accurate profile information for (partially) clouded scenes.


2020 ◽  
Vol 2 (4) ◽  
pp. 270-280
Author(s):  
Julian Matius Tagal

Purpose: To evaluate the repeatability and comparability of simulated K values obtained by the Galilei G4 Corneal Tomographer and the iDesign Wavefront Abberometer. Methods: The right eyes of 100 consecutive pre-laser-assisted in situ keratomileusis (LASIK) patients were included in this study. Patients with a history or signs of previous corneal or ocular trauma and infection were excluded. Paired corneal measurements for flat (K1) and steep (K2) meridians were obtained with both the Galilei and the iDesign. Repeatability was evaluated by calculating the coefficient of variation (CV) of the paired measurements. The comparability between platforms was evaluated by calculation of the mean differences followed by the construction of Bland-Altman plots and calculation of limits of agreement (LOA). Results: While the mean CV for both devices was low (0.17% versus 0.57% for the Galilei and iDesign, respectively), a large proportion of eyes measured by the iDesign (22%) showed an absolute difference of > 0.5 D between paired readings, compared to 1% as measured by the Galilei. The Galilei consistently measured higher than the iDesign. Although the mean difference did not exceed 0.17 D, the LOAs were unacceptablywide at -0.52 D to 0.85 D and -0.69 D to 0.89 D for K1 and K2, respectively. Conclusion: As regards keratometry, the iDesign demonstrated clinically unacceptable repeatability. Both platforms demonstrated sufficiently wide LOA that we could not recommend that they are used interchangeably.


Sign in / Sign up

Export Citation Format

Share Document