scholarly journals In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China

2012 ◽  
Vol 12 (5) ◽  
pp. 11151-11173
Author(s):  
B. Yao ◽  
M. K. Vollmer ◽  
L. X. Zhou ◽  
S. Henne ◽  
S. Reimann ◽  
...  

Abstract. In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) have been conducted at the Shangdianzi (SDZ) Global Atmosphere Watch (GAW) regional background station, China, from May 2010 to May 2011. The time series for 5 HFCs and 4 PFCs periodically showed high concentration events while background conditions occurred for 36% (HFC-32) to 83% (PFC-218) of all measurements. The mean mixing ratios during background conditions for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218 and PFC-318 were 24.5, 5.86, 9.97, 66.0, 9.77, 79.1, 4.22, 0.56, 1.28 ppt (parts per trillion, 10−12, molar), respectively. The background mixing ratios for the compounds at SDZ are consistent with those obtained at mid to high latitude sites in the Northern Hemisphere, except for HFC-32 and PFC-318 for which background mixing ratios were not reported in recent years. All HFCs and PFCs show positive trends at rates of 0.7, 1.4, 1.6, 4.1, 1.1, 0.43, 0.05, 0.01, 0.04 ppt yr−1 for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218 and PFC-318, respectively. North-easterly winds were connected with small contributions to atmospheric HFCs and PFCs loadings, whereas south-westerly advection (urban sector) showed increased loadings. Chinese emissions were estimated by a tracer ratio method using CO as tracer with rather well known emissions. The emissions, as derived from our measurement period, were 4.4 ± 0.7, 6.9 ± 0.9, 2.5 ± 0.3, 9.0 ± 1.3, 2.2 ± 0.4, 2.1 ± 0.3, 0.24 ± 0.06, 0.07 ± 0.04, 0.45 ± 0.09 kt yr−1 for HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152, CF4, PFC-116, PFC-218, and PFC-318, respectively. The lower HFC-23 emissions compared to earlier studies may be a result of the HFC-23 abatement measures taken as part of the Clean Development Mechanism (CDM) project that started in 2005.

2012 ◽  
Vol 12 (21) ◽  
pp. 10181-10193 ◽  
Author(s):  
B. Yao ◽  
M. K. Vollmer ◽  
L. X. Zhou ◽  
S. Henne ◽  
S. Reimann ◽  
...  

Abstract. Atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) were measured in-situ at the Shangdianzi (SDZ) Global Atmosphere Watch (GAW) regional background station, China, from May 2010 to May 2011. The time series for five HFCs and three PFCs showed occasionally high-concentration events while background conditions occurred for 36% (HFC-32) to 83% (PFC-218) of all measurements. The mean mixing ratios during background conditions were 24.5 ppt (parts per trillion, 10−12, molar) for HFC-23, 5.86 ppt for HFC-32, 9.97 ppt for HFC-125, 66.0 ppt for HFC-134a, 9.77 ppt for HFC-152a, 79.1 ppt for CF4, 4.22 ppt for PFC-116, and 0.56 ppt for PFC-218. The background mixing ratios for the compounds at SDZ are consistent with those obtained at mid to high latitude sites in the Northern Hemisphere. North-easterly winds were associated with negative contributions to atmospheric HFC and PFC loadings (mixing ratio anomalies weighted by time associated with winds in a given sector), whereas south-westerly advection (urban sector) showed positive loadings. Chinese emissions estimated by a tracer ratio method using carbon monoxide as tracer were 3.6 ± 3.2 kt yr−1 for HFC-23, 4.3 ± 3.6 kt yr−1 for HFC-32, 2.7 ± 2.3 kt yr−1 for HFC-125, 6.0 ± 5.6 kt yr−1 for HFC-134a, 2.0 ± 1.8 kt yr−1 for HFC-152a, 2.4 ± 2.1 kt yr−1 for CF4, 0.27 ± 0.26 kt yr−1 for PFC-116, and 0.061 ± 0.095 kt yr−1 for PFC-218. The lower HFC-23 emissions compared to earlier studies may be a result of the HFC-23 abatement measures taken as part of Clean Development Mechanism (CDM) projects that started in 2005.


2014 ◽  
Vol 7 (7) ◽  
pp. 2283-2296 ◽  
Author(s):  
M. Schmidt ◽  
M. Lopez ◽  
C. Yver Kwok ◽  
C. Messager ◽  
M. Ramonet ◽  
...  

Abstract. Results from the Trainou tall tower measurement station installed in 2006 are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and radon-222 activity. Air is sampled from four sampling heights (180, 100, 50 and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53" N, 2°06'45" E, 131 m a.s.l.). The station is equipped with a custom-built CO2 analyser (CARIBOU), which is based on a commercial non-dispersive, infrared (NDIR) analyser (Licor 6252), and a coupled gas chromatography (GC) system equipped with an electron capture detector (ECD) and a flame ionization detector (FID) (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. The ultimately achieved short-term repeatability (1 sigma, over several days) for the GC system is 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) central laboratory for the same species as well for stable isotopes of CO2. The comparison between in situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.40 ppm for CO2, 0.7 ± 7.3 ppb for CH4, 0.6 ± 0.6 ppb for N2O, 0.01 ± 0.10 ppt for SF6, 1.5± 5.3 ppb for CO and 4.8± 6.9 ppb for H2 for the years 2008–2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr−1 for CO2, 4 ppb yr−1 for CH4, 0.78 ppb yr−1 for N2O and 0.29 ppt yr−1 for SF6. For all species, the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during nighttime whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.


2012 ◽  
Vol 5 (5) ◽  
pp. 6949-6989 ◽  
Author(s):  
A. J. Gomez-Pelaez ◽  
R. Ramos ◽  
V. Gomez-Trueba ◽  
P. C. Novelli ◽  
R. Campo-Hernandez

Abstract. Atmospheric CO in-situ measurements are carried out at the Izaña (Tenerife) global GAW mountain station using a RGA (Reduction Gas Analyser). In-situ measurements at Izaña are representative of the subtropical North-East Atlantic free troposphere, specially during the night period. We present the measurement system configuration, the response function, the calibration scheme, the data processing, the Izaña's 2008–2011 CO nocturnal time series, and the mean diurnal cycle by months. We have developed a rigorous uncertainty analysis for carbon monoxide measurements carried out at the Izaña station which could be applied to other GAW stations. We determine the combined standard uncertainty from four components of the measurement: uncertainty of the WMO standard gases interpolated over the range of measurement, the uncertainty that takes into account the agreement between the standard gases and the response function used, the uncertainty due to the repeatability of the injections, and the propagated uncertainty related to the response function parameters uncertainties (which also takes into account the covariance between the parameters). The mean value of the combined standard uncertainty decreased significantly after March 2009, from 2.37 nmol mol−1 to 1.66 nmol mol−1, due to improvements in the measurement system. A fifth type of uncertainty we call representation uncertainty is considered when some of the data necessary to compute exactly the mean are absent. Any computed mean has also a propagated uncertainty arising from the uncertainties of the data used to compute the mean. The law of propagation depends on the type of uncertainty component (random or systematic). In-situ hourly means are compared with simultaneous and collocated NOAA flask samples. The uncertainty in the differences is determined and whether these are significant. For 2009–2011, only 24.5% of the differences are significant, and 68% of the differences are between −2.39 and 2.5 nmol mol−1. Total and annual mean differences are computed using conventional expressions but also expressions with weights based on the minimum variance method. The annual mean differences for 2009–2011 are well within the ±2 nmol mol−1 compatibility goal of GAW.


2014 ◽  
Vol 7 (1) ◽  
pp. 569-604 ◽  
Author(s):  
M. Schmidt ◽  
M. Lopez ◽  
C. Yver Kwok ◽  
C. Messager ◽  
M. Ramonet ◽  
...  

Abstract. Results from the Trainou tall tower measurement station installed in 2006, are presented for atmospheric measurements of CO2, CH4, N2O, SF6, CO, H2 mole fractions and Radon-222 activity. Air is sampled from four sampling heights (180 m, 100 m, 50 m and 5 m) of the Trainou 200 m television tower in the Orléans forest in France (47°57'53'' N, 2°06'45'' E, 131 m a.s.l.). The station is equipped with a custom-build CO2 analyzer (CARIBOU), which is based on a commercial NDIR analyser (Licor 6252), and a coupled gas chromatographic GC system equipped with ECD and FID (HP6890N, Agilent) and a reduction gas detector (PP1, Peak Performer). Air intakes, pumping and air drying system are shared between the CARIBOU and the GC systems. After some initial problems, we achieved short-term repeatability (1 sigma, over several days) for the GC system of of 0.05 ppm for CO2, 1.4 ppb for CH4, 0.25 ppb for N2O, 0.08 ppb for SF6, 0.88 ppb for CO and 3.8 for H2. The repeatability of the CARIBOU CO2 analyser is 0.06 ppm. In addition to the in-situ measurements, weekly flask sampling is performed, and flask air samples are analysed at the LSCE central laboratory for the same species as well for stable isotopes of CO2. The comparison between in-situ measurements and the flask sampling showed averaged differences of 0.08 ± 1.4 ppm CO2, 0.69 ± 7.3 ppb CH4, 0.64 ± 0.62 ppb N2O, 0.01 ± 0.1 ppt SF6 and 1.5 ± 5.3 ppb CO for the years 2008–2012. At Trainou station, the mean annual increase rates from 2007 to 2011 at the 180 m sampling height were 2.2 ppm yr−1 for CO2, 4 ppb yr−1 for CH4, 0.78 ppb yr−1 for N2O and 0.29 ppt yr−1 for SF6 respectively. For all species the 180 m sampling level showed the smallest diurnal variation. Mean diurnal gradients between the 50 m and the 180 m sampling level reached up to 30 ppm CO2, 15 ppm CH4 or 0.5 ppb N2O during night whereas the mean gradients are smaller than 0.5 ppm for CO2 and 1.5 ppb for CH4 during afternoon.


2010 ◽  
Vol 10 (2) ◽  
pp. 3173-3187
Author(s):  
T. Warneke ◽  
A. K. Petersen ◽  
C. Gerbig ◽  
A. Jordan ◽  
C. Rödenbeck ◽  
...  

Abstract. The first ground-based remote sensing measurements of the column averaged volume mixing ratio of CO2 (XCO2) for the inner tropics have been obtained at Paramaribo, Suriname (5.8° N, 55.2° W). The remote sensing observations are complemented by surface air-samples collected at the site, analyzed for CO2 and 13CO2. The surface in-situ measurements are strongly influenced by local sources. From the isotopic composition of the air samples the local source component is suggested to be dominated by the terrestrial biosphere. Using δ13C from the NOAA/ESRL stations Ascension Is. (ASC), 7.9° S, 14.4° W, and Ragged Point (RPB), 7.9° S, 14.4° W, the data has been corrected for the local source component. Due to the migration of the ITCZ over the measurement site the probed air masses belong to the Northern or Southern Hemisphere depending on the time of the year. Comparison to analyzed CO2 fields based on TM3 model simulations using optimized fluxes indicate agreement for XCO2 as well as for the corrected CO2 mixing ratios at the surface for the long dry season, when Paramaribo belongs to the Southern Hemisphere. A slightly worse agreement during the short dry season is attributed to a larger representation error during this time of the year. Overall the comparison demonstrates that the TM3 model is capable to simulate surface concentrations as well as column densities of CO2 correctly at the same location.


2019 ◽  
Author(s):  
Xiaoyu Sun ◽  
Minzheng Duan ◽  
Yang Gao ◽  
Rui Han ◽  
Denghui Ji ◽  
...  

Abstract. Several satellites have been launched to monitor the increasing concentrations of greenhouse gases, especially CO2 and CH4 in the atmosphere, through back-scattered hyperspectral radiance in the shortwave infrared (SWIR) band. The vertical profiles of greenhouse gases and aerosol could strongly affect the results from these instruments. To investigate the effects of the vertical distribution of CO2 on uncertainty in SWIR satellite retrieval results, we conducted observations of the vertical profiles of CO2, CH4, and aerosol particles at 0.6–7 km above sea level using a Beechcraft King Air 350ER in Jiansanjiang (46.77° N, 131.99° E), Heilongjiang province, Northeast China, on August 7–12, 2018. The profiles from this aircraft captured a decrease in CO2 from 2 km to the minimum altitude due to uptake from vegetation at the surface in summer. CH4 measurements showed an average 0.5 ppm increase from 2.0 to 0.6 km, which may result from emissions from the large area of paddy fields below, and a constant mole fraction between 1.951 and 1.976 ppm was recorded at 2 km and above. Comparison of CO2 profiles from a new version of the carbon cycle data assimilation system Tan-Tracker (v1), retrievals from OCO-2 and aircraft measurements was conducted. The results from OCO-2 and the assimilation model system Tan-Tracker captured the vertical structure of CO2 above 3 km, whereas below 3 km, the values from OCO-2 and Tan-Tracker model were lower than those from in situ measurements. Column-averaged CO2 volume mixing ratios calculated from in situ measurements showed biases of −2.39 ± 2.02 ppm and −0.61 ± 0.49 % compared to OCO-2 retrievals.


2010 ◽  
Vol 10 (1) ◽  
pp. 361-390
Author(s):  
R.-J. Huang ◽  
K. Seitz ◽  
J. Buxmann ◽  
D. Poehler ◽  
K. E. Hornsby ◽  
...  

Abstract. "Single-point" in situ measurements of molecular iodine (I2) were carried out in the coastal marine boundary layer (MBL) using diffusion denuders in combination with a gas chromatography-mass spectrometry (GC-MS) method. Comparison measurements were taken at Mace Head and Mweenish Bay, on the West Coast of Ireland. The observed mixing ratios of I2 at Mweenish Bay are much higher than that at Mace Head, indicating the emissions of I2 are correlated with the local algal biomass density and algae species. The concentration levels of I2 were found to correlate inversely with tidal height and correlate positively with the concentration levels of O3 in the surrounding air. However, the released I2 can also lead to O3 destruction via the reaction of O3 with iodine atoms that are formed by the photolysis of I2 during the day and via the reaction of I2 with NOx at night. IO and OIO were measured by long-path differential optical absorption spectroscopy (LP-DOAS). The results show that the concentrations of both daytime and nighttime IO are correlated with the mixing ratios of I2. OIO was observed not only during the day but also, for the first time at both Mace Head and Mweenish Bay, at night. In addition, I2 was measured simultaneously by the LP-DOAS technique and compared with the "single-point" in situ measurement. The results suggest that the local algae sources dominate the inorganic iodine chemistry at Mace Head and Mweenish Bay.


2018 ◽  
Author(s):  
Roya Bahreini ◽  
Ravan Ahmadov ◽  
Stu A. McKeen ◽  
Kennedy T. Vu ◽  
Justin H. Dingle ◽  
...  

Abstract. Evolution of organic aerosol (OA) and their precursors in the boundary layer of Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in-situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), with enhancement ratio of OA with respect to carbon monoxide (CO) reaching 0.068 ± 0.004 μg m−3 ppbv−1. At background mixing ratios of CO, up to ~ 2 μg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G) emissions was ~ 40 % higher than in urban-influenced plumes. Positive matrix factorization confirmed a dominant contribution of secondary, oxygenated OA (OOA) in the boundary layer instead of fresh, hydrocarbon-like OA (HOA). Combinations of primary OA (POA) volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model, coupled with Chemistry (WRF-Chem) simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including a top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to


2015 ◽  
Vol 54 (10) ◽  
pp. 2087-2097 ◽  
Author(s):  
Sujan Khanal ◽  
Zhien Wang

AbstractRemote sensing and in situ measurements made during the Colorado Airborne Multiphase Cloud Study, 2010–2011 (CAMPS) with instruments aboard the University of Wyoming King Air aircraft are used to evaluate lidar–radar-retrieved cloud ice water content (IWC). The collocated remote sensing and in situ measurements provide a unique dataset for evaluation studies. Near-flight-level IWC retrieval is compared with an in situ probe: the Colorado closed-path tunable diode laser hygrometer (CLH). Statistical analysis showed that the mean radar–lidar IWC is within 26% of the mean in situ measurements for pure ice clouds and within 9% for liquid-topped mixed-phase clouds. Considering their different measurement techniques and different sample volumes, the comparison shows a statistically good agreement and is close to the measurement uncertainty of the CLH, which is around 20%. It is shown that ice cloud microphysics including ice crystal shape and orientation has a significant impact on IWC retrievals. These results indicate that the vertical profile of the retrieved lidar–radar IWC can be reliably combined with the flight-level measurements made by the in situ probes to provide a more complete picture of the cloud microphysics.


Sign in / Sign up

Export Citation Format

Share Document