scholarly journals Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

2013 ◽  
Vol 6 (3) ◽  
pp. 5923-5957
Author(s):  
A. Nemuc ◽  
J. Vasilescu ◽  
C. Talianu ◽  
L. Belegante ◽  
D. Nicolae

Abstract. Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

2013 ◽  
Vol 6 (11) ◽  
pp. 3243-3255 ◽  
Author(s):  
A. Nemuc ◽  
J. Vasilescu ◽  
C. Talianu ◽  
L. Belegante ◽  
D. Nicolae

Abstract. Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.


2011 ◽  
Vol 11 (4) ◽  
pp. 12763-12803 ◽  
Author(s):  
L. Mona ◽  
A. Amodeo ◽  
G. D'Amico ◽  
A. Giunta ◽  
F. Madonna ◽  
...  

Abstract. Multi-wavelength Raman lidar measurements were performed at CNR-IMAA Atmospheric Observatory (CIAO) during the entire Eyjafjallajökull explosive eruptive period in April–May 2010, whenever weather conditions permitted. A methodology for volcanic layer identification and accurate aerosol typing has been developed on the basis both of the multi-wavelength Raman lidar measurements and EARLINET measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers have been observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles have been detected both at low altitudes, in the free troposphere and in the upper troposphere. Intrusions into the PBL have been revealed on 21–22 April and 13 May. In the April–May period Saharan dust intrusions typically occur in Southern Italy. For the period under investigations, a Saharan dust intrusion was observed on 13–14 May: dust and volcanic particles have been simultaneously observed at CIAO both at separated different levels and mixed within the same layer. Lidar ratios at 355 and 532 nm, Ångström exponent at 355/532 nm, backscatter related Ångström exponent at 532/1064 nm and particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers have been discussed. The dependence of these quantities on relative humidity (RH) has been investigated by using co-located microwave profiler measurements. The particle linear depolarization ratio increasing with RH, lidar ratio values at 355 nm around 80 sr, and values of the ratio of lidar ratios greater than 1 suggest the presence of sulfates mixed with continental aerosol. Lower lidar ratio values (around 40 sr) increasing with RH and values of the ratio of lidar ratios lower than 1 indicate the presence of some aged ash inside these sulfate layers.


2014 ◽  
Vol 14 (16) ◽  
pp. 8781-8793 ◽  
Author(s):  
L. Mona ◽  
N. Papagiannopoulos ◽  
S. Basart ◽  
J. Baldasano ◽  
I. Binietoglou ◽  
...  

Abstract. In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model–observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.


2015 ◽  
Vol 15 (23) ◽  
pp. 13453-13473 ◽  
Author(s):  
S. P. Burton ◽  
J. W. Hair ◽  
M. Kahnert ◽  
R. A. Ferrare ◽  
C. A. Hostetler ◽  
...  

Abstract. Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


2015 ◽  
Vol 15 (3) ◽  
pp. 3381-3413 ◽  
Author(s):  
S.-K. Shin ◽  
D. Müller ◽  
K. H. Lee ◽  
D. Shin ◽  
Y. J. Kim ◽  
...  

Abstract. We use five years (2009–2013) of multiwavelength Raman lidar measurements at Gwangju, Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust in dependence of its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modelling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground in which these plumes were transported: (I) the dust layers passed over China at high altitude levels until arrival over Gwangju, and (II) the Asian dust layers were transported near the surface and the lower troposphere over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ in dependence of their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 in case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios, and higher lidar ratio and Ångström exponents. The mean linear particle depolarization ratio was 0.13 ± 0.04, the mean lidar ratios were 63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm, respectively, and the mean Ångström exponent was 0.98 ± 0.51. These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume in dependence of transport time if the pollution layer travelled over China at low heights, i.e., below approximately 3 km above ground. In contrast we do not find such a trend if the dust plumes travelled at heights above 4 km over China. We need a longer time series of lidar measurements in order to determine the change of optical properties of dust with transport time in a quantitative way.


2021 ◽  
Author(s):  
Luka Ilić ◽  
Eleni Marinou ◽  
Aleksandar Jovanović ◽  
Maja Kuzmanoski ◽  
Slobodan Ničković

<p>Mineral dust particles in the atmosphere have a large influence on the physical properties of clouds and their lifecycle. Findings from field experiments, modeling, and laboratory studies suggest that mineral dust particles are very efficient ice-nucleating particles (INPs) even in regions distant from the desert sources. The major sources of mineral dust present in the Mediterranean basin are located in the Sahara Desert. Understanding the significance of mineral dust in ice initiation led to the development of INPC parameterizations in presence of dust for immersion freezing and deposition nucleation processes. These parameterizations were mineralogically indifferent, estimating the dust ice nucleating particle concentrations (INPCs) based on dust concentration and thermodynamic parameters. In recent studies, feldspar and quartz minerals have shown to be significantly more efficient INPs than other minerals found in dust. These findings led to the development of mineralogy-sensitive immersion freezing parameterizations. In this study, we implement mineralogy-sensitive and mineralogically-indifferent INPC parameterizations into a regional coupled atmosphere-dust numerical model. We use the Dust Regional Atmospheric Model (DREAM) to perform one month of simulations of the atmospheric cycle of dust and its feldspar and quartz fractions during Saharan dust intrusion events in the Mediterranean. EARLINET (European Aerosol Lidar Network) and AERONET (AErosol RObotic NETwork) measurements are used with POLIPHON algorithm (Polarization Lidar Photometer Networking) to derive cloud-relevant dust concentration profiles. We compare DREAM results with lidar-based vertical profiles of dust mass concentration, surface area concentration, number concentration, and INPCs. This analysis is a step towards the systematic analysis of dust concentration and INPC parameterizations performance when compared to lidar derived vertical profiles.</p>


2020 ◽  
Vol 12 (7) ◽  
pp. 1172
Author(s):  
Alfredo Falconieri ◽  
Nikolaos Papagiannopoulos ◽  
Francesco Marchese ◽  
Carolina Filizzola ◽  
Serena Trippetta ◽  
...  

Two tailored configurations of the Robust Satellite Technique (RST) multi-temporal approach, for airborne volcanic ash and desert dust detection, have been tested in the framework of the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) project. The two algorithms, running on Spinning Enhanced Visible Infra-Red Imager (SEVIRI) data, were previously assessed over wide areas by comparison with independent satellite-based aerosol products. In this study, we present results of a first validation analysis of the above mentioned satellite-based ash/dust products using independent, ground-based observations coming from the European Aerosol Research Lidar Network (EARLINET). The aim is to assess the capabilities of RST-based ash/dust products in providing useful information even at local scale and to verify their applicability as a “trigger” to timely activate EARLINET measurements during airborne hazards. The intense Saharan dust event of May 18–23 2008—which affected both the Mediterranean Basin and Continental Europe—and the strong explosive eruptions of Eyjafjallajökull (Iceland) volcano of April–May 2010, were analyzed as test cases. Our results show that both RST-based algorithms were capable of providing reliable information about the investigated phenomena at specific sites of interest, successfully detecting airborne ash/dust in different geographic regions using both nighttime and daytime SEVIRI data. However, the validation analysis also demonstrates that ash/dust layers remain undetected by satellite in the presence of overlying meteorological clouds and when they are tenuous (i.e., with an integrated backscatter coefficient less than ~0.001 sr−1 and with aerosol backscatter coefficient less than ~1 × 10−6 m−1sr−1). This preliminary analysis confirms that the continuity of satellite-based observations can be used to timely “trigger” ground-based LIDAR measurements in case of airborne hazard events. Finally, this work confirms that advanced satellite-based detection schemes may provide a relevant contribution to the monitoring of ash/dust phenomena and that the synergistic use of (satellite-based) large scale, continuous and timely records with (ground-based) accurate and quantitative measurements may represent an added value, especially in operational scenarios.


Sign in / Sign up

Export Citation Format

Share Document