scholarly journals A gas chromatograph for quantification of peroxycarboxylic nitric anhydrides calibrated by thermal dissociation cavity ring-down spectroscopy

2014 ◽  
Vol 7 (6) ◽  
pp. 5953-6019
Author(s):  
T. W. Tokarek ◽  
J. A. Huo ◽  
C. A. Odame-Ankrah ◽  
D. Hammoud ◽  
Y. M. Taha ◽  
...  

Abstract. The peroxycarboxylic nitric anhydrides (PANs, molecular formula RC(O)O2NO2) can readily be observed by gas chromatography coupled to electron capture detection (PAN-GC). Calibration of a PAN-GC remains a challenge because the response factors (RF's) differ for each of the PANs and because their synthesis in sufficiently high purity is non-trivial, in particular for PANs containing unsaturated side chains. In this manuscript, a PAN-GC and its calibration using diffusion standards, whose output was quantified by blue diode laser thermal dissociation cavity ring-down spectroscopy (TD-CRDS), are described. The PAN-GC peak areas correlated linearly with total peroxy nitrate (ΣPN) mixing ratios measured by TD-CRDS (r > 0.96). Accurate determination of RF's required the concentrations of PAN impurities in the synthetic standards to be subtracted from ΣPN. The PAN-GC and its TD-CRDS calibration method were deployed during ambient air measurement campaigns in Abbotsford, BC, from 20 July to 5 August, 2012, and during the Fort McMurray Oil Sands Strategic Investigation of Local Sources (FOSSILS) campaign at the AMS13 ground site in Fort McKay, AB, from 10 August to 5 September 2013. For the Abbotsford data set, the PAN-GC mixing ratios were compared and agreed with those determined in parallel by thermal dissociation chemical ionization mass spectrometry (TD-CIMS). Advantages and disadvantages of the PAN measurement techniques used in this work and the utility of TD-CRDS as a PAN-GC calibration method are discussed.

2014 ◽  
Vol 7 (10) ◽  
pp. 3263-3283 ◽  
Author(s):  
T. W. Tokarek ◽  
J. A. Huo ◽  
C. A. Odame-Ankrah ◽  
D. Hammoud ◽  
Y. M. Taha ◽  
...  

Abstract. The peroxycarboxylic nitric anhydrides (PANs, molecular formula: RC(O)O2NO2) can readily be observed by gas chromatography (PAN-GC) coupled to electron capture detection. Calibration of a PAN-GC remains a challenge, because the response factors differ for each of the PANs, and because their synthesis in sufficiently high purity is non-trivial, in particular for PANs containing unsaturated side chains. In this manuscript, a PAN-GC and its calibration using diffusion standards, whose output was quantified by blue diode laser thermal dissociation cavity ring-down spectroscopy (TD-CRDS), are described. The PAN-GC peak areas correlated linearly with total peroxy nitrate (ΣPN) mixing ratios measured by TD-CRDS (r > 0.96). Accurate determination of response factors required the concentrations of PAN impurities in the synthetic standards to be subtracted from ΣPN. The PAN-GC and its TD-CRDS calibration method were deployed during ambient air measurement campaigns in Abbotsford, BC, from 20 July to 5 August 2012, and during the Fort McMurray Oil Sands Strategic Investigation of Local Sources (FOSSILS) campaign at the AMS13 ground site in Fort McKay, AB, from 10 August to 5 September 2013. The PAN-GC limits of detection for PAN, PPN, and MPAN during FOSSILS were 1, 2, and 3 pptv, respectively. For the Abbotsford data set, the PAN-GC mixing ratios were compared, and agreed with those determined in parallel by thermal dissociation chemical ionization mass spectrometry (TD-CIMS). Advantages and disadvantages of the PAN measurement techniques used in this work and the utility of TD-CRDS as a PAN-GC calibration method are discussed.


2020 ◽  
Vol 13 (8) ◽  
pp. 4159-4167 ◽  
Author(s):  
Nicholas J. Gingerysty ◽  
Hans D. Osthoff

Abstract. A well-characterized source of nitrous acid vapour (HONO) is essential for accurate ambient air measurements by instruments requiring external calibration. In this work, a compact HONO source is described in which gas streams containing dilute concentrations of HONO are generated by flowing hydrochloric acid (HCl) vapour emanating from a permeation tube over continuously agitated dry sodium nitrite (NaNO2) heated to 50 ∘C. Mixing ratios of HONO and potential by-products including NO, NO2, and nitrosyl chloride (ClNO) were quantified by Fourier transform infrared (FTIR) and thermal-dissociation cavity ring-down spectroscopy (TD-CRDS). A key parameter is the concentration of HCl, which needs to be kept small (<4 ppmv) to avoid ClNO formation. The source produces gas streams containing HONO in air in >95 % purity relative to other nitrogen oxides. The source output is rapidly tuneable and stabilizes within 90 min. Combined with its small size and portability, this source is highly suitable for calibration of HONO instruments in the field.


2020 ◽  
Author(s):  
Nicholas J. Gingerysty ◽  
Hans D. Osthoff

Abstract. A well-characterized source of nitrous acid vapour (HONO) is essential for accurate ambient air measurements by instruments requiring external calibration. In this work, a compact HONO source is described in which gas streams containing dilute concentrations of HONO are generated by flowing hydrochloric acid (HCl) vapour emanating from a permeation tube over continuously agitated dry sodium nitrite (NaNO2) heated to 50 ºC. Mixing ratios of HONO and potential by-products including NO, NO2 and nitrosyl chloride (ClNO) were quantified by Fourier Transform Infrared (FTIR) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). A key parameter is the concentration of HCl, which needs to be kept small ( 97 % purity relative to other nitrogen oxides. The source output is rapidly tuneable and stabilizes within 90 min. Combined with its small size and portability this source is highly suitable for calibration of HONO instruments in the field.


2018 ◽  
Vol 11 (7) ◽  
pp. 4109-4127
Author(s):  
Youssef M. Taha ◽  
Matthew T. Saowapon ◽  
Faisal V. Assad ◽  
Connie Z. Ye ◽  
Xining Chen ◽  
...  

Abstract. Peroxy and peroxyacyl nitrates (PNs and PANs) are important trace gas constituents of the troposphere which are challenging to quantify by differential thermal dissociation with NO2 detection in polluted (i.e., high-NOx) environments. In this paper, a thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer (TD-PERCA-CRDS) for sensitive and selective quantification of total peroxynitrates (ΣPN  =  ΣRO2NO2) and of total peroxyacyl nitrates (ΣPAN  =  ΣRC(O)O2NO2) is described. The instrument features multiple detection channels to monitor the NO2 background and the ROx ( =  HO2 + RO2 + ΣRO2) radicals generated by TD of ΣPN and/or ΣPAN. Chemical amplification is achieved through the addition of 0.6 ppm NO and 1.6 % C2H6 to the inlet. The instrument's performance was evaluated using peroxynitric acid (PNA) and peroxyacetic or peroxypropionic nitric anhydride (PAN or PPN) as representative examples of ΣPN and ΣPAN, respectively, whose abundances were verified by iodide chemical ionization mass spectrometry (CIMS). The amplification factor or chain length increases with temperature up to 69 ± 5 and decreases with analyte concentration and relative humidity (RH). At inlet temperatures above 120 and 250 °C, respectively, PNA and ΣPAN fully dissociated, though their TD profiles partially overlap. Furthermore, interference from ozone (O3) was observed at temperatures above 150 °C, rationalized by its partial dissociation to O atoms which react with C2H6 to form C2H5 and OH radicals. Quantification of PNA and ΣPAN in laboratory-generated mixtures containing O3 was achieved by simultaneously monitoring the TD-PERCA responses in multiple parallel CRDS channels set to different temperatures in the 60 to 130 °C range. The (1 s, 2σ) limit of detection (LOD) of TD-PERCA-CRDS is 6.8 pptv for PNA and 2.6 pptv for ΣPAN and significantly lower than TD-CRDS without chemical amplification. The feasibility of TD-PERCA-CRDS for ambient air measurements is discussed.


2018 ◽  
Author(s):  
Youssef M. Taha ◽  
Matthew T. Saowapon ◽  
Faisal V. Assad ◽  
Connie Z. Ye ◽  
Xining Chen ◽  
...  

Abstract. Peroxy and peroxyacyl nitrates (PNs and PANs) are important trace gas constituents of the troposphere which are challenging to quantify by differential thermal dissociation with NO2 detection in polluted (i.e., high-NOx) environments. In this paper, a thermal dissociation peroxy radical chemical amplification cavity ring-down spectrometer (TD-PERCA-CRDS) for sensitive and selective quantification of total peroxynitrates (ΣPN = ΣRO2NO2) and of total peroxyacyl nitrates (ΣPAN = ΣRC(O)O2NO2) is described. The instrument features multiple detection channels to monitor the NO2 background and the ROx (= HO2 + RO2 + ΣRO2) radicals generated by TD of ΣPN and/or ΣPAN. Chemical amplification is achieved through addition of 0.6 ppm NO and 1.6 % C2H6 to the inlet. The instrument's performance was evaluated using peroxynitric acid (PNA) and peroxyacetic or peroxypropionic nitric anhydride (PAN or PPN) as representative examples of ΣPN and ΣPAN, respectively, whose abundances were verified by iodide chemical ionization mass spectrometry (CIMS). The amplification factor or chain length increases with temperature up to 69 ± 5 and decreases with analyte concentration and relative humidity (RH). At inlet temperatures above 120 °C and 250 °C, respectively, PNA and ΣPAN fully dissociated, though their TD profiles partially overlap. Furthermore, interference from ozone (O3) was observed at temperatures above 150 °C, rationalized by its partial dissociation to O atoms which react with C2H6 to form C2H5 and OH radicals. Quantification of PNA and ΣPAN in laboratory-generated mixtures containing O3 was achieved by simultaneously monitoring the TD-PERCA responses in multiple parallel CRDS channels set to different temperatures in the 60 °C to 130 °C range. The (1 s, 1σ) limit of detection (LOD) of TD-PERCA-CRDS is 3.4 pptv for PNA and 1.3 pptv for ΣPAN and significantly lower than TD-CRDS without chemical amplification. The feasibility of TD-PERCA-CRDS for ambient air measurements is discussed.


2021 ◽  
Author(s):  
Patrick Dewald ◽  
Raphael Dörich ◽  
Jan Schuladen ◽  
Jos Lelieveld ◽  
John N. Crowley

Abstract. We present measurements of isoprene-derived organic nitrates (ISOP-NITs) generated in the reaction of isoprene with the nitrate radical (NO3) in a 1 m3 Teflon reaction chamber. Detection of ISOP-NITs is achieved via their thermal dissociation to nitrogen dioxide (NO2), which is monitored by cavity ring-down spectroscopy (TD-CRDS). Using thermal dissociation inlets (TDIs) made of quartz, the temperature-dependent dissociation profiles (thermograms) of ISOP-NITs measured in the presence of ozone (O3) are broad (350 to 700 K), which contrasts the narrower profiles previously observed for e.g. isopropyl nitrate (iPN) or peroxy acetyl nitrate (PAN) under the same conditions. The shape of the thermograms varied with the TDI’s surface to volume ratio and with material of the inlet walls, providing clear evidence that ozone and quartz surfaces catalyse the dissociation of unsaturated organic nitrates leading to formation of NO2 at temperatures well below 475 K, impeding the separate detection of alkyl nitrates (ANs) and peroxy nitrates (PNs). We present a simple, viable solution to this problem and discuss the potential for interference by the thermolysis of nitric acid (HNO3), nitrous acid (HONO) and O3.


Sign in / Sign up

Export Citation Format

Share Document