scholarly journals Density correction of NRLMSISE-00 in the middle atmosphere (20–100 km) based on TIMED/SABER density data

2019 ◽  
Author(s):  
Xuan Cheng ◽  
Junfeng Yang ◽  
Cunying Xiao ◽  
Xiong Hu

Abstract. This paper describes the density correction of the NRLMSISE-00 using more than 15 years (2002–2016) of TIMED/SABER satellite atmospheric density data from the middle atmosphere (20–100 km). A bias correction factor dataset is established based on the density differences between the TIMED/SABER data and NRLMSISE-00. Seven height nodes are set in the range 20–100 km. The different scale oscillations of the correction factor are separated at each height node, and the spherical harmonic function is used to fit the coefficients of the different timescale oscillations to obtain a spatiotemporal function at each height node. Cubic spline interpolation is used to obtain the correction factor at other heights. The spatiotemporal correction function proposed in this paper achieves a good correction effect on the atmospheric density of the NRLMSISE-00 model. The correction effect becomes more pronounced as the height increases. After correction, the relative error of the model decreased by 40–50 % in July, especially at ±40° N in the 80–100 km region. The atmospheric model corrected by the spatiotemporal function achieves higher accuracy for forecasting the atmospheric density during different geomagnetic activities. During geomagnetic storms, the relative errors in atmospheric density at 100 km, 72 km, and 32 km decrease from 41.21 %, 28.56 %, and 3.03 % to −9.65 %, 5.38 %, and 1.44 %, respectively, after correction. The relative errors in atmospheric density at 100 km, 72 km, and 32 km decrease from 68.95 %, 24.98 %, and 3.56 % to 3.49 %, 3.02 %, and 1.77 %, respectively, during geomagnetic quiet period. The correction effect during geomagnetic quiet period is better than that during geomagnetic storms at a height of 100 km. The subsequent effects of geomagnetic activity will be considered, and the atmospheric density during magnetic storms and quiet periods is corrected separately near 100 km. The ability of the model to characterize the mid-atmosphere (20–100 km) is significantly improved compared with the pre-correction performance. As a result, the corrected NRLMSISE-00 can provide more reliable atmospheric density data for scientific research and engineering fields such as data analysis, instrument design, and aerospace vehicles.

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 341
Author(s):  
Xuan Cheng ◽  
Junfeng Yang ◽  
Cunying Xiao ◽  
Xiong Hu

This paper describes the density correction of the NRLMSISE-00 using more than 15 years (2002–2016) of TIMED/SABER satellite atmospheric density data from the middle atmosphere (20–100 km). A bias correction factor dataset is established based on the density differences between the TIMED/SABER data and NRLMSISE-00. Seven height nodes are set in the range between 20 and 100 km. The different scale oscillations of the correction factor are separated at each height node, and the spherical harmonic function is used to fit the coefficients of the different timescale oscillations to obtain a spatiotemporal function at each height node. Cubic spline interpolation is used to obtain the correction factor at other non-node heights. The spatiotemporal correction function depends on six key parameters, including height, latitude, longitude, local time, day, and year. The evaluation results show that the spatiotemporal correction function proposed in this paper achieves a good correction effect on the atmospheric density of NRLMSISE-00. The correction effect becomes more pronounced as the height increases. After correction, the relative error of the model decreased by 40%–50% in July, especially at ±40° N in the 80–100 km region. The correction effect of the spatiotemporal correction function under different geomagnetic activity may have some potential relationships with geomagnetic activities. During geomagnetic storms, the relative errors in atmospheric density at 100, 70, and 32 km decrease from 41.21%, 22.09%, and 3.03% to −9.65%, 2.60%, and 1.44%, respectively, after correction. The relative errors in atmospheric density at 100, 70, and 32 km decrease from 68.95%, 21.02%, and 3.56% to 3.49%, 2.20%, and 1.77%, respectively, during the geomagnetic quiet period. The correction effect during the geomagnetic quiet period is better than that during geomagnetic storms at a height of 100 km. The subsequent effects of geomagnetic activity will be considered, and the atmospheric density during magnetic storms and quiet periods will be corrected separately near 100 km. The ability of the model to characterize the mid-atmosphere (20–100 km) is significantly improved compared with the pre-correction performance. As a result, the corrected NRLMSISE-00 can provide more reliable atmospheric density data for scientific researches and engineering fields, such as data analysis, instrument design, and aerospace vehicles.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1312
Author(s):  
Yue Wu ◽  
Zheng Sheng ◽  
Xinjie Zuo ◽  
Minghao Yang

Falling-sphere sounding remains an important method for in situ determination in the middle atmosphere and is the only determination method within the altitude range of 60–100 km. Traditional single-falling-sphere sounding indicates only the atmospheric density and horizontal wind but not the vertical wind; the fundamental reason is that the equation set for retrieving atmospheric parameters is underdetermined. For tractability, previous studies assumed the vertical wind, which is much smaller than the horizontal wind, to be small or zero. Obtaining vertical wind profiles necessitates making the equations positive definite or overdetermined. An overdetermined equation set consisting of six equations, by which the optimal solution of density and three-dimensional wind can be obtained, can be established by the double-falling-sphere method. Hence, a simulation experiment is designed to retrieve the atmospheric density and three-dimensional wind field by double falling spheres. In the inversion results of the simulation experiment, the retrieved density is consistent with the constructed atmospheric density in magnitude; the density deviation rate does not generally exceed 20% (less than 5% below 60 km). The atmospheric density retrieved by the double-falling-sphere method is more accurate at low altitudes than the single-falling-sphere method. The vertical wind below 50 km and horizontal wind retrieved by double-falling-sphere method is highly consistent with the constructed average wind field. Additionally, the wind field deviation formula is deduced. These results establish the fact that the double-falling-sphere method is effective in detecting atmospheric density and three-dimensional wind.


2008 ◽  
Vol 26 (5) ◽  
pp. 1181-1187 ◽  
Author(s):  
G. Beig

Abstract. In this paper a brief overview of the changes in atmospheric ion compositions driven by the human-induced changes in related neutral species, and temperature from the troposphere to lower thermosphere has been made. It is found that ionic compositions undergo significant variations. The variations calculated for the double-CO2 scenario are both long-term and permanent in nature. Major neutrals which take part in the lower and middle atmospheric ion chemical schemes and undergo significant changes due to anthropogenic activities are: O, O2, H2O, NO, acetonitrile, pyridinated compounds, acetone and aerosol. The concentration of positive ion/electron density does not change appreciably in the middle atmosphere but indicates a marginal decrease above about 75 km until about 85 km, above which the magnitude of negative trend decreases and becomes negligible at 93 km. Acetonitrile cluster ions in the upper stratosphere are likely to increase, whereas NO+ and NO+(H2O) in the mesosphere and lower thermosphere (MLT) region are expected to decrease for the double CO2 scenario. It is also found that the atmospheric density of pyridinated cluster ions is fast rising in the troposphere.


2019 ◽  
Vol 12 (7) ◽  
pp. 4065-4076 ◽  
Author(s):  
Arvid Langenbach ◽  
Gerd Baumgarten ◽  
Jens Fiedler ◽  
Franz-Josef Lübken ◽  
Christian von Savigny ◽  
...  

Abstract. We present a new method for calculating backscatter ratios of the stratospheric sulfate aerosol (SSA) layer from daytime and nighttime lidar measurements. Using this new method we show a first year-round dataset of stratospheric aerosol backscatter ratios at high latitudes. The SSA layer is located at altitudes between the tropopause and about 30 km. It is of fundamental importance for the radiative balance of the atmosphere. We use a state-of-the-art Rayleigh–Mie–Raman lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) station located in northern Norway (69∘ N, 16∘ E; 380 m a.s.l.). For nighttime measurements the aerosol backscatter ratios are derived using elastic and inelastic backscatter of the emitted laser wavelengths 355, 532 and 1064 nm. The setup of the lidar allows measurements with a resolution of about 5 min in time and 150 m in altitude to be performed in high quality, which enables the identification of multiple sub-layers in the stratospheric aerosol layer of less than 1 km vertical thickness. We introduce a method to extend the dataset throughout the summer when measurements need to be performed under permanent daytime conditions. For that purpose we approximate the backscatter ratios from color ratios of elastic scattering and apply a correction function. We calculate the correction function using the average backscatter ratio profile at 355 nm from about 1700 h of nighttime measurements from the years 2000 to 2018. Using the new method we finally present a year-round dataset based on about 4100 h of measurements during the years 2014 to 2017.


2000 ◽  
Author(s):  
George Granholm ◽  
Ronald Proulx ◽  
Paul Cefola ◽  
Andrey Nazarenko ◽  
Vasiliy Yurasov

The paper discusses the properties of the different effects which have been found to occur in the thermosphere and some conclusions which can be drawn with regard to the physics of the thermosphere. In the discussion of the diurnal variation the emphasis is on the behaviour of the diurnal amplitude in density during the solar cycle. At the height range between 200 and 300 km the amplitude has remarkably increased with decreasing solar activity. The relation between atmospheric density and temperature and the solar e.u.v. flux and the solar 10.7 cm flux—the latter serving as a convenient parameter—is discussed. The observational results for a phaseshift between the variations in the e.u.v. flux (or 10.7 cm flux) and the correlated variations in atmospheric temperature (or density) lie in the range between 0.5 and 2.3 days. During the solar minimum the atmospheric variations which parallel the 10.7 cm flux are far less pronounced than the variations correlated with geomagnetic activity. The phase shift derived from 45 geomagnetic storms and correlated density changes has been found to be 6 ± 3 (m.e.) h.


Sign in / Sign up

Export Citation Format

Share Document