scholarly journals Supplementary material to "Ionospheric Plasma Flows Associated with the Formation of the Distorted Nightside End of A Transpolar Arc"

Author(s):  
Motoharu Nowada ◽  
Adrian Grocott ◽  
Quan-Qi Shi
2021 ◽  
Vol 2021 (2) ◽  
pp. 36-45
Author(s):  
V.A. Shuvalov ◽  
◽  
Yu.P. Kuchugurnyi ◽  
M.I. Pysmennyi ◽  
S.M. Kulahin ◽  
...  

Principles of simulation of the physical-chemical and electromagnetic interaction of a spacecraft with the near-satellite environment and principles of probe diagnostics of rarefied plasma flows onboard a spacecraft are stated. Equivalence criteria are formulated for the interaction of a spacecraft with the near-satellite environment and hypersonic rarefied plasma flows on dedicated setups, in particular on the plasmaelectrodynamic setup of the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, which has the status of the National Patrimony of Ukraine. The features of spacecraft interaction with the near-satellite environment were studied along the following three lines: - degradation of the materials and performance characteristics of spacecraft components in a long-term orbital service: - magnetohydrodynamic interaction of a spacecraft with hypersonic rarefied plasma flows; - probe diagnostic of rarefied plasma flows onboard a spacecraft. Along the first line, a calculation-and-experiment procedure was developed to evaluate the power decrease of spacecraft silicon solar batteries under long-term (~ 10 years) exposure to the space factors and the near-satellite environment in circular orbits. Principles of accelerated life tests for the resistance of spacecraft polymer materials to long-term exposure to atomic oxygen flows and vacuum ultraviolet radiation were developed. Simultaneous exposure of polymers to atomic oxygen and vacuum ultraviolet radiation results in the synergic effect of mass loss by materials that contain a monomer of the (CH)n group. Along the second line, models were formulated for magnetohydrodynamic interaction in the magnetized spacecraft – ionospheric plasma system. It was shown that the interaction of a ?0,8 – 1.5 T magnetic field of a space debris object (in particular, a spent spacecraft) with the ionospheric plasma produces an electromagnetic drag force sufficient for removing it to a low orbit followed by its burn-up in the dense atmosphere. Along the third line, procedures were developed for ionospheric plasma probe diagnostics using onboard instrumentation that includes mutually orthogonal cylindrical electrical probes and a two-channel neutral-particle detector. It was shown that this instrumentation with the use of proprietary output signal interpretation algorithms and procedures allows one to locate sources of space-time disturbances in inospheric plasma parameters caused by natural and technogeneous catastrophic phenomena on the subsatellite track.


1992 ◽  
Vol 12 (12) ◽  
pp. 163-167
Author(s):  
S.I. Avdyushin ◽  
M.B. Belotserkovsky ◽  
V. Kim ◽  
A.S. Koroteev ◽  
A.M. Kulikov ◽  
...  

2022 ◽  
Author(s):  
Motoharu Nowada ◽  
Adrian Grocott ◽  
Quan-Qi Shi

Abstract. We investigate ionospheric flow patterns from 28th January 2002 associated with the development of the nightside distorted end of a “J”-shaped Transpolar Arc (nightside distorted TPA). Based on the nightside ionospheric flows near to the TPA, detected by the SuperDARN radars, we discuss how the distortion of the nightside end toward the pre-midnight sector is produced. The “J”-shaped TPA was seen under southward Interplanetary Magnetic Field (IMF) conditions, in the presence of a dominant dawnward IMF-By component. At the onset time of the nightside distorted TPA, particular equatorward plasma flows at the TPA growth point were observed in the post-midnight sector, flowing out of the polar cap and then turning toward the pre-midnight sector of the main auroral oval along the distorted nightside part of the TPA. We suggest that these plasma flows play a key role in causing the nightside distortion of the TPA. SuperDARN also found ionospheric flows typically associated with “Tail Reconnection during IMF Northward Non-substorm Intervals” (TRINNIs) on the nightside main auroral oval before and during the TPA interval, indicating that nightside magnetic reconnection is an integral process to the formation of the nightside distorted TPA. During the TPA growth, SuperDARN also detected anti-sunward flows across the open-closed field line boundary on the dayside that indicate the occurrence of low-latitude dayside reconnection and ongoing Dungey cycle driving. This suggests that nightside distorted TPA can grow even in Dungey-cycle-driven plasma flow patterns.


1997 ◽  
Vol 78 (03) ◽  
pp. 1150-1156 ◽  
Author(s):  
Christina Jern ◽  
Heléne Seeman-Lodding ◽  
Bjӧrn Biber ◽  
Ola Winsӧ ◽  
Sverker Jern

SummaryExperimental data indicate large between-organs variations in rates of synthesis of tissue-type plasminogen activator (t-PA), which may reflect important differences in the capacity for constitutive and stimulated t-PA release from the vascular endothelium. In this report we describe a new multiple-organ experimental in vivo model for simultaneous determinations of net release/uptake rates of t-PA across the coronary, splanchnic, pulmonary, and hepatic vascular beds. In eleven intact anesthetized pigs, blood samples were obtained simultaneously from the proximal aorta, coronary sinus, pulmonary artery, and portal and hepatic veins. Plasma flows were monitored separately for each vascular region. Total plasma t-PA was determined by ELISA with a porcine t-PA standard. Regional net release/uptake rates were defined as the product of arteriovenous concentration gradients and local plasma flows. The net release of t-PA across the splanchnic vascular bed was very high, with a mean output of 1,919 ng total t-PA X min-1 (corresponding to 90 ng per min and 100 g tissue). The net coronary t-PA release was 68 ng X min-1 (30 ng X min-1 X 100 g"1)- Pulmonary net fluxes of t-PA were variable without any significant net t-PA release. The net hepatic uptake rate was 4,855 ng X min-1 (436 ng X min-1 X 100 g-1). Net trans-organ changes of active t-PA mirrored those of total t-PA. The results demonstrate marked regional differences in net release rates of t-PA in vivo. The experimental model we present offers new possibilities for evaluation of regional secretion patterns in the intact animal.


2000 ◽  
Vol 6 (5-6) ◽  
pp. 35-48
Author(s):  
N.V. Baranets ◽  
V.V. Afonin ◽  
V.A. Gladyshev ◽  
Y.P. Sobolev ◽  
G.P. Komrakov

2013 ◽  
Vol 19 (5(84)) ◽  
pp. 16-26
Author(s):  
V.A. Shuvalov ◽  
◽  
D.N. Lazuchenkov ◽  
S.V. Nosikov ◽  
G.S. Kochubey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document