scholarly journals Monitoring of UV spectral irradiance at Thessaloniki (1990–2005): data re-evaluation and quality control

2006 ◽  
Vol 24 (12) ◽  
pp. 3215-3228 ◽  
Author(s):  
K. Garane ◽  
A. F. Bais ◽  
S. Kazadzis ◽  
A. Kazantzidis ◽  
C. Meleti

Abstract. We present a re-evaluation and quality control of spectral ultraviolet irradiance measurements from two Brewer spectroradiometers operating regularly at Thessaloniki, Greece. The calibration history of the two instruments was re-examined and data flaws were identified by comparing quasi synchronous measurements. Analysis of the sensitivity of both instruments to variations of their internal temperature revealed that they have temperature coefficients of different sign. These coefficients exhibit small variability during the 15-year period. Using averaged temperature coefficients, we corrected both datasets. Corrections were applied for the angular response error using two different approaches depending on the availability of required ancillary data. The uncertainties associated with the measurements have been estimated and presented. Finally, the two datasets are compared using ratios of irradiance integrals at various bands in the UV, in order to assess any dependencies on the internal instrument temperature, solar zenith angle and wavelength.

2021 ◽  
Vol 42 (11) ◽  
pp. 4224-4240
Author(s):  
Gyuyeon Kim ◽  
Yong-Sang Choi ◽  
Sang Seo Park ◽  
Jhoon Kim

2021 ◽  
Vol 20 (2) ◽  
pp. 265-274
Author(s):  
Angela C. G. B. Leal ◽  
Marcelo P. Corrêa ◽  
Michael F. Holick ◽  
Enaldo V. Melo ◽  
Marise Lazaretti-Castro

2007 ◽  
Vol 64 (2) ◽  
pp. 656-664 ◽  
Author(s):  
Shouting Gao ◽  
Yushu Zhou ◽  
Xiaofan Li

Abstract Effects of diurnal variations on tropical heat and water vapor equilibrium states are investigated based on hourly data from two-dimensional cloud-resolving simulations. The model is integrated for 40 days and the simulations reach equilibrium states in all experiments. The simulation with a time-invariant solar zenith angle produces a colder and drier equilibrium state than does the simulation with a diurnally varied solar zenith angle. The simulation with a diurnally varied sea surface temperature generates a colder equilibrium state than does the simulation with a time-invariant sea surface temperature. Mass-weighted mean temperature and precipitable water budgets are analyzed to explain the thermodynamic differences. The simulation with the time-invariant solar zenith angle produces less solar heating, more condensation, and consumes more moisture than the simulation with the diurnally varied solar zenith angle. The simulation with the diurnally varied sea surface temperature produces a colder temperature through less latent heating and more IR cooling than the simulation with the time-invariant sea surface temperature.


2015 ◽  
Vol 120 (6) ◽  
pp. 4446-4451 ◽  
Author(s):  
Lihui Chai ◽  
Weixing Wan ◽  
Markus Fraenz ◽  
Tielong Zhang ◽  
Eduard Dubinin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document