scholarly journals Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?

2007 ◽  
Vol 25 (12) ◽  
pp. 2649-2659 ◽  
Author(s):  
H. J. Fahr

Abstract. We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration) induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.

2010 ◽  
Author(s):  
Lorenzo Matteini ◽  
Simone Landi ◽  
Marco Velli ◽  
Petr Hellinger ◽  
M. Maksimovic ◽  
...  

2021 ◽  
Vol 923 (1) ◽  
pp. 116
Author(s):  
Mihailo M. Martinović ◽  
Kristopher G. Klein ◽  
Tereza Ďurovcová ◽  
Benjamin L. Alterman

Abstract Instabilities described by linear theory characterize an important form of wave–particle interaction in the solar wind. We diagnose unstable behavior of solar wind plasma between 0.3 and 1 au via the Nyquist criterion, applying it to fits of ∼1.5M proton and α particle Velocity Distribution Functions (VDFs) observed by Helios I and II. The variation of the fraction of unstable intervals with radial distance from the Sun is linear, signaling a gradual decline in the activity of unstable modes. When calculated as functions of the solar wind velocity and Coulomb number, we obtain more extreme, exponential trends in the regions where collisions appear to have a notable influence on the VDF. Instability growth rates demonstrate similar behavior, and significantly decrease with Coulomb number. We find that for a nonnegligible fraction of observations, the proton beam or secondary component might not be detected, due to instrument resolution limitations, and demonstrate that the impact of this issue does not affect the main conclusions of this work.


2004 ◽  
Vol 22 (7) ◽  
pp. 2547-2553 ◽  
Author(s):  
V. I. Domrin ◽  
A. P. Kropotkin

Abstract. By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS), with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.


2005 ◽  
Vol 23 (2) ◽  
pp. 567-577 ◽  
Author(s):  
L. J. Baddeley ◽  
T. K. Yeoman ◽  
D. M. Wright ◽  
K. J. Trattner ◽  
B. J. Kellet

Abstract. Many theories state that Ultra Low Frequency (ULF) waves with a high azimuthal wave number (m) have their energy source in wave-particle interactions, yet this assumption has been rarely tested numerically and thus many questions still remain as to the waves' exact generation mechanism. For the first time, this paper investigates the cause and effect relationship between the driving magnetospheric particle populations and the ULF wave signatures as observed in the conjugate ionosphere by quantitatively examining the energy exchange that occurs. Firstly, a Monte Carlo method is used to demonstrate statistically that the particle populations observed during conjugate ionospheric high m wave events have more free energy available than populations extracted at random. Secondly, this paper quantifies the energy transferred on a case study basis, for two classes of high m waves, by examining magnetospheric Ion Distribution Functions, (IDFs) and directly comparing these with the calculated wave energy dissipated into the conjugate ionosphere. Estimates of the wave energy at the source and the sink are in excellent agreement, with both being of the order of 1010J for a typical high m wave. Ten times more energy (1011J) is transferred from the magnetospheric particle population and dissipated in the ionosphere when considering a subset of high m waves known as giant pulsations (Pgs). Previous work has demonstrated that 1010J is frequently available from non - Maxwellian IDFs at L=6, whereas 1011J is not. The combination of these studies thus provides an explanation for both the rarity of Pgs and the ubiquity of other high m waves in this region.


2013 ◽  
Vol 31 (12) ◽  
pp. 2207-2212 ◽  
Author(s):  
D. Pokhotelov ◽  
S. von Alfthan ◽  
Y. Kempf ◽  
R. Vainio ◽  
H. E. J. Koskinen ◽  
...  

Abstract. A novel hybrid-Vlasov code, Vlasiator, is developed for global simulations of magnetospheric plasma kinetics. The code is applied to model the collisionless bow shock on scales of the Earth's magnetosphere in two spatial dimensions and three dimensions in velocity space retrieving ion distribution functions over the entire foreshock and magnetosheath regions with unprecedented detail. The hybrid-Vlasov approach produces noise-free uniformly discretized ion distribution functions comparable to those measured in situ by spacecraft. Vlasiator can reproduce features of the ion foreshock and magnetosheath well known from spacecraft observations, such as compressional magnetosonic waves generated by backstreaming ion populations in the foreshock and mirror modes in the magnetosheath. An overview of ion distributions from various regions of the bow shock is presented, demonstrating the great opportunities for comparison with multi-spacecraft observations.


2020 ◽  
Author(s):  
Andrey Divin ◽  
Jan Deca ◽  
Charles Lue ◽  
Roman Beliaev

<p>We investigate the dynamics of solar wind - Moon interaction by means of large-scale Particle-in-Cell (PIC) simulations in this study. Implicit moment PIC method and open boundaries are implemented in the code (iPIC3D) allowing to use large-scale domains in three dimensions. Even though the Moon has no global dipolar magnetic field, satellite magnetic field measurements at low-altitude (8-80 km) orbits discovered the presence of patches of intense remanent magnetization of the lunar crust. In order to simulate the scattering effect of the lunar remanent magnetic field we implemented an empirical proton reflection model based on low-attitude survey by the Chandrayaan-1 spacecraft [Lue, 2011]. In this study we focus on the day side effects only and thus do not resolve wake and limb effects. Reflected ions are found to create an energized population of particles in the solar wind and are responsible for sub-ion scale instabilities over the strongest anomalies with non-Maxwellian ion distribution functions.</p>


2021 ◽  
Author(s):  
Patricio A. Munoz ◽  
Jörg Büchner ◽  
Neeraj Jain

<p>Turbulence is ubiquitous in solar system plasmas like those of the solar wind and Earth's magnetosheath. Current sheets can be formed out of this turbulence, and eventually magnetic reconnection can take place in them, a process that converts magnetic into particle kinetic energy. This interplay between turbulence and current sheet formation has been extensively analyzed with MHD and hybrid-kinetic models. Those models cover all the range between large Alfvénic scales down to ion-kinetic scales. The consequences of current sheet formation in plasma turbulence that includes electron dynamics has, however, received comparatively less attention. For this sake we carry out 2.5D fully kinetic Particle-in-Cell simulations of kinetic plasma turbulence including both ion and electron spectral ranges. In order to further assess the electron kinetic effects, we also compare our results with hybrid-kinetic simulations including electron inertia in the generalized Ohm's law. We analyze and discuss the electron and ion energization processes in the current sheets and magnetic islands formed in the turbulence. We focus on the electron and ion distribution functions formed in and around those current sheets and their stability properties that are relevant for the micro-instabilities feeding back into the turbulence cascade. We also compare pitch angle distributions and non-Maxwellian features such as heat fluxes with recent in-situ solar wind observations, which demonstrated local particle acceleration processes in reconnecting solar wind current sheets [Khabarova et al., ApJ, 2020].</p>


Author(s):  
Khurom H. Kiyani ◽  
Kareem T. Osman ◽  
Sandra C. Chapman

The past decade has seen a flurry of research activity focused on discerning the physics of kinetic scale turbulence in high-speed astrophysical plasma flows. By ‘kinetic’ we mean spatial scales on the order of or, in particular, smaller than the ion inertial length or the ion gyro-radius—the spatial scales at which the ion and electron bulk velocities decouple and considerable change can be seen in the ion distribution functions. The motivation behind most of these studies is to find the ultimate fate of the energy cascade of plasma turbulence, and thereby the channels by which the energy in the system is dissipated. This brief Introduction motivates the case for a themed issue on this topic and introduces the topic of turbulent dissipation and heating in the solar wind. The theme issue covers the full breadth of studies: from theory and models, massive simulations of these models and observational studies from the highly rich and vast amount of data collected from scores of heliospheric space missions since the dawn of the space age. A synopsis of the theme issue is provided, where a brief description of all the contributions is discussed and how they fit together to provide an over-arching picture on the highly topical subject of dissipation and heating in turbulent collisionless plasmas in general and in the solar wind in particular.


2018 ◽  
Author(s):  
Johan De Keyser ◽  
Benoit Lavraud ◽  
Lubomir Přech ◽  
Eddy Neefs ◽  
Sophie Berkenbosch ◽  
...  

Abstract. Space plasma spectrometers have often relied on spacecraft spin to collect three-dimensional particle velocity distributions, which simplifies the instrument design and reduces its resource budgets, but limits the velocity distribution acquisition rate. This limitation can in part be overcome by a the use of electrostatic deflectors at the entrance of the analyser. By mounting such a spectrometer on a sun-pointing spacecraft, solar wind ion distributions can be acquired at a much higher rate because the solar wind ion population, which is a cold beam that fills only part of the sky around its mean arrival direction, always remains in view. The present paper demonstrates how the operation of such an instrument can be optimized through the use of beam tracking strategies. The underlying idea is that it is much more efficient to cover only that part of the energy spectrum and those arrival directions where the solar wind beam is expected to be. The advantages of beam tracking are a faster velocity distribution acquisition for a given angular and energy resolution, or higher angular and energy resolution for a given acquisition rate. It is demonstrated by simulation that such beam tracking strategies can be very effective while limiting the risk of losing the beam. They can be implemented fairly easily with present-day on-board processing resources.


Sign in / Sign up

Export Citation Format

Share Document