scholarly journals Frequency variations of gravity waves interacting with a time-varying tide

2013 ◽  
Vol 31 (10) ◽  
pp. 1731-1743 ◽  
Author(s):  
C. M. Huang ◽  
S. D. Zhang ◽  
F. Yi ◽  
K. M. Huang ◽  
Y. H. Zhang ◽  
...  

Abstract. Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

2014 ◽  
Vol 32 (9) ◽  
pp. 1129-1143 ◽  
Author(s):  
S. D. Zhang ◽  
C. M. Huang ◽  
K. M. Huang ◽  
F. Yi ◽  
Y. H. Zhang ◽  
...  

Abstract. We extended the broad spectral method proposed by Zhang et al. (2013) for the extraction of medium- and high-frequency gravity waves (MHGWs). This method was applied to 11 years (1998–2008) of radiosonde data from 92 stations in the Northern Hemisphere to investigate latitudinal, continuous vertical and seasonal variability of MHGW parameters in the lower atmosphere (2–25 km). The latitudinal and vertical distributions of the wave energy density and horizontal momentum fluxes as well as their seasonal variations exhibit considerable consistency with those of inertial gravity waves. Despite the consistency, the MHGWs have much larger energy density, horizontal momentum fluxes and wave force, indicating the more important role of MHGWs in energy and momentum transportation and acceleration of the background. For the observed MHGWs, the vertical wavelengths are usually larger than 8 km; the horizontal wavelengths peak in the middle troposphere at middle–high latitudes. These characteristics are obviously different from inertial gravity waves. The energy density and horizontal momentum fluxes have similar latitude-dependent seasonality: both of them are dominated by a semiannual variation at low latitudes and an annual variation at middle latitudes; however at high latitudes, they often exhibit more than two peaks per year in the troposphere. Compared with the inertial GWs, the derived intrinsic frequencies are more sensitive to the spatiotemporal variation of the buoyancy frequency, and at all latitudinal regions they are higher in summer. The wavelengths have a weaker seasonal variation; an evident annual cycle can be observed only at middle latitudes.


2015 ◽  
Vol 15 (5) ◽  
pp. 2709-2721 ◽  
Author(s):  
M. Pramitha ◽  
M. Venkat Ratnam ◽  
A. Taori ◽  
B. V. Krishna Murthy ◽  
D. Pallamraju ◽  
...  

Abstract. Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki (13.5° N, 79.2° E) and Hyderabad (17.5° N, 78.5° E) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. The ray tracing is performed using background temperature and wind data obtained from the MSISE-90 and HWM-07 models, respectively. For the Gadanki region, the suitability of these models is tested. Further, a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground-based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. ERA-Interim products are utilized for constructing background parameters corresponding to the meteorological conditions of the observations. With the reverse ray-tracing method, the source locations for nine wave events could be identified to be in the upper troposphere, whereas for five other events the waves terminated in the mesosphere itself. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50–100 km and 150–300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Prevailing conditions at the terminal points for each of the 14 events are provided. As no convection in and around the terminal points is noticed, convection is unlikely to be the source. Interestingly, large (~9 m s−1km−1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10–12 km altitude) and are thus identified to be the source for generating the observed high-phase-speed, high-frequency gravity waves.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. R47-R59 ◽  
Author(s):  
R. P. Srivastava ◽  
M. K. Sen

In general, inversion algorithms rely on good starting models to produce realistic earth models. A new method, based on a fractional Gaussian distribution derived from the statistical parameters of available well logs to generate realistic initial models, uses fractal theory to generate these models. When such fractal-based initial models estimate P- and S-impedance profiles in a prestack stochastic inversion of seismic angle gathers, very fast simulated annealing — a global optimization method — finds the minimum of an objective function that minimizes data misfit and honors the statistics derived from well logs. The new stochastic inversion method addresses frequencies missing because of band limitation of the wavelet; it combines the low- and high-frequency variation from well logs with seismic data. This method has been implemented successfully using real prestack seismic data, and results have been compared with deterministic inversion. Models derived by a deterministic inversion are devoid of high-frequency variations in the well log; however, models derived by stochastic inversion reveal high-frequency variations that are consistent with seismic and well-log data.


2020 ◽  
Vol 20 (12) ◽  
pp. 7617-7644
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

Abstract. Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; x–z and t) and two-dimensional (2D; z and t) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wave number 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.


2021 ◽  
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

<p>Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW) event. Four-dimensional (4D; <span><em>x</em></span>–<span><em>z</em></span> and <span><em>t</em></span>) and two-dimensional (2D; <span><em>z</em></span> and <span><em>t</em></span>) results are compared for various parameterized pseudomomentum fluxes. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward pseudomomentum fluxes are enhanced in the upper troposphere and northern stratosphere due to refraction and curvature effects around fluctuating jet flows. In the northern polar upper mesosphere and lower thermosphere, eastward pseudomomentum fluxes are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wave numbers due to refraction and curvature effects can make it more possible that GWs elude critical level filtering and saturation in the lower atmosphere. GW focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Enhancement of the structure of zonal wavenumber 2 in pseudomomentum fluxes in the middle stratosphere begins from the early stage of the SSW evolution. An increase in pseudomomentum fluxes in the upper atmosphere is present even after the onset in the 4D. Significantly enhanced pseudomomentum fluxes, when the polar vortex is disturbed, are related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structures without substantially changing local mean flows.</p>


2020 ◽  
Author(s):  
In-Sun Song ◽  
Changsup Lee ◽  
Hye-Yeong Chun ◽  
Jeong-Han Kim ◽  
Geonhwa Jee ◽  
...  

Abstract. Effects of realistic propagation of gravity waves (GWs) on distribution of GW pseudomomentum fluxes (Fps) are explored using a global ray-tracing model for the 2009 sudden stratospheric warming (SSW). Four-dimensional (4D) (x–z, t) and two-dimensional (2D) (z, t) results are compared for various parameterized Fps. In ray-tracing equations, refraction due to horizontal wind shear and curvature effects are found important and comparable to one another in magnitude. In the 4D, westward Fps are enhanced in the upper troposphere and northern stratosphere, due to refraction and curvature effects around fluctuating jet flows associated with large-scale waves. In the northern polar upper mesosphere and lower thermosphere, eastward Fps are increased in the 4D. GWs are found to propagate more to the upper atmosphere in the 4D, since horizontal propagation and change in wavenumbers due to refraction and curvature effects can make it more possible that GWs elude critical-level filtering and saturation in the lower atmosphere. GW focusing and ray-tube effects have some impacts on changes in Fps. Focusing effects occur around jet cores, and ray-tube effects appear where the polar stratospheric jets vary substantially in space and time. Increase in the Fps in the northern upper stratosphere and the lower thermosphere begins from the early stage of the SSW evolution, and it is present even after the onset in the 4D. Significantly enhanced Fps in the northern stratosphere are likely related to GWs with small intrinsic group velocity (wave capture), and they would change nonlocally nearby large-scale vortex structure without changing substantially local mean flows.


2020 ◽  
Author(s):  
Mark B. Green ◽  
Linda H. Pardo ◽  
Scott W. Bailey ◽  
John L. Campbell ◽  
William H. McDowell ◽  
...  

1998 ◽  
Vol 120 (1) ◽  
pp. 89-96 ◽  
Author(s):  
R. A. Van den Braembussche ◽  
H. Malys

A lumped parameter model to predict the high frequency pressure oscillations observed in a water brake dynamometer is presented. It explains how the measured low frequency variations of the torque are a consequence of the variation in amplitude of the high frequency flow oscillations. Based on this model, geometrical modifications were defined, aiming to suppress the oscillations while maintaining mechanical integrity of the device. An experimental verification demonstrated the validity of the model and showed a very stable operation of the modified dynamometer even at very low torque.


2002 ◽  
Vol 29 (18) ◽  
pp. 40-1-40-4 ◽  
Author(s):  
C. Bertrand ◽  
M. F. Loutre ◽  
A. Berger

1996 ◽  
Vol 183 (1) ◽  
pp. 323-327 ◽  
Author(s):  
Q L Yang ◽  
E C Gotschlich

The lipooligosaccharide (LOS) expressed by gonococci spontaneously varies its structure at high frequency, but the underlying genetic mechanism has not been described. We have previously reported that the genes encoding the glycosyl transferases responsible for the biosynthesis of the variable alpha chain of the LOS of Neisseria gonorrhoeae are located in a locus containing five genes, lgtA, lgtB, lgtC, lgtD, and lgtE. Sequence analysis showed that lgtA, lgtC, and lgtD contained poly-G tracts within the coding frames, leading to the hypothesis that shifts in the number of guanosine residues in the poly-G tracts might be responsible for the high frequency variation in structure of gonococcal LOS. We now provide experimental evidence confirming this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document