scholarly journals The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization

2004 ◽  
Vol 22 (4) ◽  
pp. 1171-1176 ◽  
Author(s):  
E. M. Apostolov ◽  
D. Altadill ◽  
M. Todorova

Abstract. Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity. Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions) – Magnetospheric physics (solar wind-magnetosphere interactions)

2016 ◽  
Vol 34 (12) ◽  
pp. 1159-1164 ◽  
Author(s):  
Pieter Benjamin Kotzé

Abstract. In this paper we use wavelets and Lomb–Scargle spectral analysis techniques to investigate the changing pattern of the different harmonics of the 27-day solar rotation period of the AE (auroral electrojet) index during various phases of different solar cycles between 1960 and 2014. Previous investigations have revealed that the solar minimum of cycles 23–24 exhibited strong 13.5- and 9.0-day recurrence in geomagnetic data in comparison to the usual dominant 27.0-day synodic solar rotation period. Daily mean AE indices are utilized to show how several harmonics of the 27-day recurrent period change during every solar cycle subject to a 95 % confidence rule by performing a wavelet analysis of each individual year's AE indices. Results show that particularly during the solar minimum of 23–24 during 2008 the 27-day period is no longer detectable above the 95 % confidence level. During this interval geomagnetic activity is now dominated by the second (13.5-day) and third (9.0-day) harmonics. A Pearson correlation analysis between AE and various spherical harmonic coefficients describing the solar magnetic field during each Carrington rotation period confirms that the solar dynamo has been dominated by an unusual combination of sectorial harmonic structure during 23–24, which can be responsible for the observed anomalously low solar activity. These findings clearly show that, during the unusual low-activity interval of 2008, auroral geomagnetic activity was predominantly driven by high-speed solar wind streams originating from multiple low-latitude coronal holes distributed at regular solar longitude intervals.


2011 ◽  
Vol 29 (1) ◽  
pp. 197-207 ◽  
Author(s):  
H. Pham Thi Thu ◽  
C. Amory-Mazaudier ◽  
M. Le Huy

Abstract. This study is the first which gives the climatology of the ionosphere at the northern tropical crest of ionization in the Asian sector. We use the data from Phu Thuy station, in Vietnam, through three solar cycles (20, 21 and 22), showing the complete morphology of ionosphere parameters by analyzing long term variation, solar cycle variation and geomagnetic activity effects, seasonal evolution and diurnal development. Ionospheric critical frequencies, foF2, foF1 and foE, evolve according to the 11-year sunspot cycle. Seasonal variations show that foF2 exhibits a semiannual pattern with maxima at equinox, and winter and equinoctial anomalies depending on the phases of the sunspot solar cycle. ΔfoF2 exhibits a semiannual variation during the minimum phase of the sunspot solar cycle 20 and the increasing and decreasing phases of solar cycle 20, 21 and 22. ΔfoF1 exhibits an annual variation during the maximum phase of solar cycles 20, 21 and 22. Δh'F2 shows a regular seasonal variation for the different solar cycles while Δh'F1 exhibits a large magnitude dispersion from one sunspot cycle to another. The long term variations consist in an increase of 1.0 MHz for foF2 and of 0.36 MHz for foF1. foE increases 0.53 MHz from solar cycle 20 to solar cycle 21 and then decreases −0.23 MHz during the decreasing phase of cycle 21. The diurnal variation of the critical frequency foF2 shows minima at 05:00 LT and maxima around 14:00 LT. foF1 and foE have a maximum around noon. The diurnal variation of h'F2 exhibits a maximum around noon. The main features of h'F1 are a minimum near noon and the maximum near midnight. Other minima and maxima occur in the morning, at about 04:00 or 05:00 LT and in the afternoon, at about 18:00 or 19:00 LT but they are markedly smaller. Only during the maximum phase of all sunspot solar cycles the maximum near 19:00 LT is more pronounced.


2011 ◽  
Vol 7 (S286) ◽  
pp. 200-209 ◽  
Author(s):  
E. Echer ◽  
B. T. Tsurutani ◽  
W. D. Gonzalez

AbstractThe recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, Rz, interplanetary magnetic field (IMF) magnitude Bo and solar wind speed Vsw were the lowest during the space era. Furthermore, the variance of the IMF southward Bz component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.


2019 ◽  
Vol 631 ◽  
pp. A138 ◽  
Author(s):  
G. Hawkes ◽  
A. R. Yeates

Aims. We estimate the injection of relative magnetic helicity into the solar atmosphere by surface flux transport over 27 solar cycles (1700–2009). Methods. We determine the radial magnetic field evolution using two separate surface flux transport models: one driven by magnetogram inputs and another by statistical active region insertion guided by the sunspot number record. The injection of relative magnetic helicity is then computed from this radial magnetic field together with the known electric field in the flux transport models. Results. Neglecting flux emergence, solar rotation is the dominant contributor to the helicity injection. At high latitudes, the injection is always negative/positive in the northern/southern hemisphere, while at low latitudes the injection tends to have the opposite sign when integrated over the full solar cycle. The overall helicity injection in a given solar cycle depends on the balance between these two contributions. This net injected helicity correlates well with the end-of-cycle axial dipole moment.


2020 ◽  
Vol 10 ◽  
pp. 52
Author(s):  
Alessandro Ippolito ◽  
Loredana Perrone ◽  
Christina Plainaki ◽  
Claudio Cesaroni

The variations of the hourly observations of the critical frequency foF2, recorded at the Ionospheric Observatory of Rome by the AIS-INGV ionosonde (geographic coordinates 41.82° N, 12.51° E; geomagnetic coordinates 41.69° N, 93.97° E) during the low activity periods at the turn of solar cycles 21–22, 22–23 and 23–24, are investigated. Deviations of foF2 greater than ± 15% with respect to a background level, and with a minimum duration of 3 h, are here considered anomalous. The dependence of these foF2 anomalies on geomagnetic activity has been accurately investigated. Particular attention has been paid to the last deep solar minimum 2007–2009, in comparison with the previous solar cycle minima. The lack of day-time anomalous negative variations in the critical frequency of the F2 layer, is one of the main findings of this work. Moreover, the analysis of the observed foF2 anomalies confirms the existence of two types of positive F2 layer disturbances, characterised by different morphologies and, different underlying physical processes. A detailed analysis of four specific cases allows the definition of possible scenarios for the explanation of the mechanisms behind the generation of the foF2 anomalies.


2011 ◽  
Vol 48 (4) ◽  
pp. 66-70
Author(s):  
R. Agarwal ◽  
R. Mishra

Galactic Cosmic Ray Modulation Up to Recent Solar Cycles Cosmic ray neutron monitor counts obtained by different ground-based detectors have been used to study the galactic cosmic ray modulation during the last four solar activity cycles. Since long, systematic correlative studies have been per-formed to establish a significant relationship between the cosmic ray intensity and different helio-spheric activity parameters, and the study is extended to a recent solar cycle (23). In the present work, the yearly average of 10.7 cm solar radio flux and the interplanetary magnetic field strength (IMF, B) have been used to find correlation of the yearly average cosmic ray intensity derived from different neutron monitors. It is found that for four solar cycles (20-23) the cosmic ray intensity is anti-correlated with the 10.7 cm solar radio flux and the IMF, B value with some discrepancy. However, this is in a good positive correlation with the flux of mentioned wavelength for four different solar cycles. The IMF, B shows a weak correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23.


2019 ◽  
Vol 41 (1) ◽  
pp. 59-68
Author(s):  
Abidina Diabaté ◽  
Jean Louis Zerbo ◽  
Frédéric Ouattara

In this paper, we review on diurnal variations of the foF2 ionospheric parameter predicted by the IRI-2012 model, and data from Ouagadougou ionosonde station located in the crest of the Equatorial Anomaly (Lat: 12.5°N; Long: 358.5°E, dip: 1.43°) during fluctuating geomagnetic activity conditions for the solar cycles 21 and 22. Our investigations are focused on the electrodynamic aspects, the influence of the ionospheric electric currents as well as the variations of the hourly values given by model and experimental measurements. A comparative study pointed out that the IRI-2012 model, through its URSI and CCIR subroutines, gives a good prediction of the critical frequency of the F2 layer between 0700 TL and 0000 TL. In addition, IRI -2012 tries to reproduce, as best as possible, the vertical drift E × B during minimum, decreasing phase, winter, and autumn. However, there is no effect of drift during the other seasons and solar cycle phases. A last, the model does not take into account the PRE phenomenon observed in autumn and the influence of the equatorial electrojet in this ionospheric zone.ReferencesAcharya R., Roy B., Sivaraman M.R., 2010. Dasgupta A. An empirical relation of daytime equatorial total electron content with equatorial electrojet in the Indian zone. J Atmos Terr Phys, 72(10), 774–780.Acharya R., Roy B., Sivaraman M.R.; Dasgupta A., 2011. On conformity of the EEJ based Ionospheric model to the Fountain effect and resulting improvements. J Atmos Terr Phys, 73, 779-784.Adeniyi J.O., Oladipo O.A., Radicella S.M., 2005. Variability of fof2 and comparison with iri model for an equatorial station. The Abdus Salam International Centre for Theoretical Physics, IC/2005/085, http://www.ictp.it/~pub_off.Adeniyi1 J.O., Oladjipo O.A., Radicella S.M., 2005. Variability of foF2 and comparison with IRI model for an equatorial station. The Abdus Salam International Centre for Theoretical Physics, IC/2005/085.Bilitza D., et al., 2014. The International Reference Ionosphere 2012-a model of international collaborationI.  J. Space Weather Space Clim, 4, A07.Bilitza D., Reinisch B.W., 2008. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res, 42, 599–609.Farley D.T., Bonell E., Fejer B.G., Larsen M.F., 1986. The Prereversal Enhancement of the Zonal Electric Field in the Equatorial Ionosphere. J Geophys Res, 91(A12), 13,723–13,728.Faynot J.M., Villa P., 1979. F region at the magnetic equator. Ann Geophys, 35, 1–9.Fejer B.G., 1981. The equatorial ionospheric electric fields: A review. J Atmos Terr Phys, 43, 377.Fejer B.G., Farley D.T., Woodman R.F., Calderon C., 1979. Dependence of equatorial F region vertical drifts on season and solar cycle. J Geophys Res, 84, 5792.Legrand J.P., Simon P.A., 1989. Solar cycle and geomagnetic activity: A review for geophysicists. Part I. The contributions to geomagnetic activity of shock waves and of the solar wind. Ann. Geophys, 7, 565–578.Obrou K.O., 2008. Contribution à l’amélioration du modèle "International Reference Ionosphere" (IRI) pour l’ionosphère équatoriale. Thèse de doctorat Université de Cocody,  Abidjan, Côte d’Ivoire.Ouattara F., 2009. Contribution à l’étude des relations entre les deux composantes du champ magnétique solaire et l’Ionosphère Equatoriale. Thèse de Doctorat d’Etat ès Sciences, Université Cheikh Anta Diop, Dakar, Sénégal.Ouattara F., 2013. IRI-2007 foF2 Predictions at Ouagadougou Station during Quiet Time Periods from 1985 to 1995. Archives of Physics Research, 4, 12–18.Ouattara F., Amory-Mazaudier C., 2009. Solar–geomagnetic activity and Aa indices toward a Standard.  J. Atmos. Terr. Phys, 71, 1736–1748.Ouattra F., Nanéma, 2014. Quiet Time foF2 Variation at Ouagadougou Station and Comparison with TIEGCM and IRI-2012 Predictions for 1985 and 1990. Physical Science International Journal, 4(6), 892–902.Oyekola  O.S., Fagundes P.R., 2012. Equatorial F2-layer variations: Comparison between F2 peak parameters at Ouagadougou with the IRI-2007 model.  Earth, Planets Space, 64, 553–566.Rishbeth H., 1971. The F-layer dynamo. Planet, Space Sci, 19, 263.Vassal J.A., 1982. The variation of the magnetic field and its relationship with the equatorial electrojet in Senegal Oriental. Annals of Geophysics, Tome French, 38.Zerbo J.L., Amory-Mazaudier C. Ouattara F., Richardson J., 2012. Solar Wind and Geomagnetism, toward a Standard Classification 1868-2009.  Ann Geophys, 30, 421–426. http://dx.doi.org/10.5194/angeo-30-421-2012.Zerbo J.L., Amory-Mazaudier C., Ouattara F., 2013. Geomagnetism during solar cycle 23: Characteristics. J. Adv. Res, 4(3), 265–274. Doi:10.1016/j.jare.2013.08.010.Zerbo J.L., Ouattara F., Zoundi C., Gyébré A., 2011. Solar cycle 23 and geomagnetic activity since 1868. Revue CAMES serie A, 12(2), 255–262.


2020 ◽  
Vol 38 (6) ◽  
pp. 1237-1245
Author(s):  
Zhanle Du

Abstract. Predicting the maximum intensity of geomagnetic activity for an upcoming solar cycle is important in space weather service and for planning future space missions. This study analyzed the highest and lowest 3-hourly aa index (aaH∕aaL) in a 3 d interval, smoothed by 363 d to analyze their variation with the 11-year solar cycle. It is found that the maximum of aaH (aaHmax) is well correlated with the preceding minimum of either aaH (aaHmin, r=0.85) or aaL (aaLmin, r=0.89) for the solar cycle. Based on these relationships, the intensity of aaHmax for solar cycle 25 is estimated to be aaHmax(25)=83.7±6.9 (nT), about 29 % stronger than that of solar cycle 24. This value is equivalent to the ap index of apmax(25)=47.4±4.4 (nT) if employing the high correlation between ap and aa (r=0.93). The maximum of aaL (aaLmax) is also well correlated with the preceding aaHmin (r=0.80). The maximum amplitude of the sunspot cycle (Rm) is much better correlated with high geomagnetic activity (aaHmax, r=0.79) than with low geomagnetic activity (aaLmax, r=0.37). The rise time from aaHmin to aaHmax is weakly anti-correlated to the following aaHmax (r=-0.42). Similar correlations are also found for the 13-month smoothed monthly mean aa index. These results are expected to be useful in understanding the geomagnetic activity intensity of solar cycle 25.


Sign in / Sign up

Export Citation Format

Share Document