scholarly journals Mapping of steady-state electric fields and convective drifts in geomagnetic fields – Part 1: Elementary models

2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.

2007 ◽  
Vol 25 (2) ◽  
pp. 543-555 ◽  
Author(s):  
J. D. Menietti ◽  
R. A. Frahm ◽  
A. Korth ◽  
F. S. Mozer ◽  
Y. Khotyaintsev

Abstract. We investigate particle and fields data during a conjunction of the Polar and Cluster spacecraft. This conjunction occurs near the dayside cusp boundary layer when a dayside inverted-V was observed in the particle data of both satellites. Electron, ion, electric field, and magnetic field data from each satellite confirm that the dayside inverted-V (DSIV) structure is present at the location of both satellites and the electric fields persist from the altitude of the Polar (lower) spacecraft to the altitude of the Cluster spacecraft. We observe accelerated, precipitating electrons and upward ions along the magnetic field. In addition, large amplitude electric fields perpendicular to the ambient magnetic field seen by Polar and by Cluster suggest significant parallel electric fields associated with these events. For similar DSIV events observed by the Polar spacecraft, plasma waves (identified as possible Alfvén waves) have been observed to propagate in both directions along the magnetic field line. Future conjunctions will be necessary to confirm that DSIVs are associated with reconnection sites.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Kouichi Hirotani

When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03–0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich–Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (IC) process, spending a portion of the extracted hole’s rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.


2007 ◽  
Vol 21 (10) ◽  
pp. 1715-1720 ◽  
Author(s):  
NANA METREVELI ◽  
ZAUR KACHLISHVILI ◽  
BEKA BOCHORISHVILI

The transverse runaway (TR) is a phenomenon whereby for a certain combination of energy and momentum scattering mechanisms of hot electrons, and for a certain threshold of the applied electric field, the internal (total) field tends to infinity. In this work, the effect of the magnetic field on the transverse runaway threshold is considered. It is shown that with increasing magnetic field, the applied critical electric fields relevant to TR decrease. The obtained results are important for practical applications of the TR effect as well as for the investigation of possible nonlinear oscillations that may occur near the TR threshold.


2007 ◽  
Vol 25 (3) ◽  
pp. 453-464 ◽  
Author(s):  
L. Torrisi ◽  
D. Margarone ◽  
S. Gammino ◽  
L. Andò

Laser-generated plasma is obtained in high vacuum (10−7 mbar) by irradiation of metallic targets (Al, Cu, Ta) with laser beam with intensities of the order of 1010 W/cm2. An Nd:Yag laser operating at 1064 nm wavelength, 9 ns pulse width, and 500 mJ maximum pulse energy is used. Time of flight measurements of ion emission along the direction normal to the target surface were performed with an ion collector. Measurements with and without a 0.1 Tesla magnetic field, directed along the normal to the target surface, have been taken for different target-detector distances and for increasing laser pulse intensity. Results have demonstrated that the magnetic field configuration creates an electron trap in front of the target surface along the axial direction. Electric fields inside the trap induce ion acceleration; the presence of electron bundles not only focuses the ion beam but also increases its energy, mean charge state and current. The explanation of this phenomenon can be found in the electric field modification inside the non-equilibrium plasma because of an electron bunching that increases the number of electron-ion interactions. The magnetic field, in fact, modifies the electric field due to the charge separation between the clouds of fast electrons, many of which remain trapped in the magnetic hole, and slow ions, ejected from the ablated target; moreover it increases the number of electron-ion interactions producing higher charge states.


2012 ◽  
Vol 30 (1) ◽  
pp. 177-202 ◽  
Author(s):  
N. Yu. Ganushkina ◽  
M. W. Liemohn ◽  
T. I. Pulkkinen

Abstract. The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT) on 6–7 November 1997 and one intense (SymH minimum of −230 nT) on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM), in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines) forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS) relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.


1985 ◽  
Vol 107 ◽  
pp. 529-536
Author(s):  
Vytenis M. Vasyliunas

For a meeting of people from such widely different fields, this Symposium has exhibited a remarkable degree of unity. There has been one key concept running as a thread throughout the Symposium: the concept of magnetic field line reconnection, or magnetic field line merging as I prefer to call it. It was dealt with directly in many papers, and many others dealt indirectly with it and various related aspects. The concept was applied in the Symposium to an amazing variety of objects and was examined from many points of view and by many different techniques. Magnetic field line reconnection or merging is a paradoxical concept. It clearly depends upon magnetohydrodynamics (MHD); for example, constraints imposed by the MHD relation between the magnetic field and the plasma flow are essential to set it up - without these constraints (if, for example, the electric field parallel to the magnetic field could assume any desired value) the problems we discuss under the heading of magnetic reconnection would merely be moderately complicated problems of magnetostatics. At the same time, departures from ideal MHD are also an essential and unavoidable part of the concept.


2016 ◽  
Vol 82 (5) ◽  
Author(s):  
Z. Akbari ◽  
M. Hosseinpour ◽  
M. A. Mohammadi

In a three-dimensional non-null magnetic reconnection, the process of magnetic reconnection takes place in the absence of a null point where the magnetic field vanishes. By randomly injecting a population of 10 000 protons, the trajectory and energy distribution of accelerated protons are investigated in the presence of magnetic and electric fields of a particular model of non-null magnetic reconnection with the typical parameters for the solar corona. The results show that protons are accelerated along the magnetic field lines away from the non-null point only at azimuthal angles where the magnitude of the electric field is strongest and therefore particles obtain kinetic energies of the order of thousands of MeV and even higher. Moreover, the energy distribution of the population depends strongly on the amplitude of the electric and magnetic fields. Comparison shows that a non-null magnetic reconnection is more efficient in accelerating protons to very high GeV energies than a null-point reconnection.


Sign in / Sign up

Export Citation Format

Share Document