scholarly journals Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3 ∕ COSMIC GPS radio occultation data

2020 ◽  
Vol 38 (3) ◽  
pp. 611-623
Author(s):  
Ankur Kepkar ◽  
Christina Arras ◽  
Jens Wickert ◽  
Harald Schuh ◽  
Mahdi Alizadeh ◽  
...  

Abstract. The Global Positioning System – Radio Occultation (GPS-RO) observations from FormoSat-3 ∕ COSMIC are used to comprehend the global distribution of equatorial plasma bubbles which are characterized by depletion regions of plasma in the F region of the ionosphere. Plasma bubbles that cause intense scintillation of the radio signals are identified based on the S4 index derived from the 1 Hz raw signal-to-noise ratio measurements between 2007 and 2017. The analyses revealed that bubbles influenced by background plasma density occurred along the geomagnetic equator and had an occurrence peak around the dip equator during high solar activity. The peak shifted between the African and American sectors, depending on different solar conditions. Plasma bubbles usually developed around 19:00 local time (LT), with maximum occurrence around 21:00 LT during solar maximum and ∼22:00 LT during solar minimum. The occurrence of bubbles showed a strong dependence on longitudes, seasons, and solar cycle with the peak occurrence rate in the African sector around the March equinox during high solar activity, which is consistent with previous studies. The GPS-RO technique allows an extended analysis of the altitudinal distribution of global equatorial plasma bubbles obtained from high vertical resolution profiles, thus making it a convenient tool which could be further used with other techniques to provide a comprehensive view of such ionospheric irregularities.

2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Onkar Gurav ◽  
Rupesh Ghodpage ◽  
Parashram Patil ◽  
Sripathi Samireddipalle ◽  
Ashok Sharma ◽  
...  

In this paper, the occurrence characteristics of the equatorial plasma bubbles (EPBs) using OI 630.0 nm all sky imager (ASI) night airglow observations over Kolhapur (16.8o N, 74.2o E, 10.6o dip. Lat.) during the solar cycle-24 are presented. These results are discussed in terms of season, solar and magnetic activity during years 2011 to 2018. The ASI observations were only carried out during January to May and October to December months due to unfavorable weather conditions. The results suggest that while January, February and December are the only months where EPBs were found to occur over Kolhapur in any year, but the percentage of occurrence of EPBs during these months suggests their low occurrence rate during solar minimum. A total of 683 nights of observations were carried, out of which, 93 nights are found to be magnetically disturbed nights having Ap>18. In addition, the ASI observations are also correlated with Pre-Reversal Enhancement of the vertical drift of the evening sector at Tirunelveli on few storm events for comparison. The important findings of this study are: 1) increase in the occurrence of EPBs with respect to the solar activity; 2) suppression of EPBs on 71 disturbed nights, while enhancement of EPBs on 22 nights under magnetic disturbance; 3) EPBs occurrence during equinox months is found to be higher than winter months during ascending phase of solar cycle-24.; and, 4) EPBs are mostly observed in the pre-midnight sector in the high solar activity (HSA) period, while they are seen in the post-midnight to dawn sector during the low solar activity (LSA) period. We also noticed non-occurrence of EPBs during equinox month in the year 2018 which seems to be peculiar and needs further investigations.


2019 ◽  
Author(s):  
Ankur Kepkar ◽  
Christina Arras ◽  
Jens Wickert ◽  
Harald Schuh ◽  
Mahdi Alizadeh ◽  
...  

Abstract. The emerging technique of GPS Radio Occultation has been used to detect the ionospheric irregularities prominent in the F-region known as equatorial plasma bubbles. The plasma bubbles are characterized by depreciated regions of electron density. For investigating the plasma bubbles, a nine-year (2008–2016) long time series of signal-to-noise ratio data are used from the vertical GPS radio occultation profiles. The variation in the signal-to-noise ratio of the GPS signals can be linked to vertical changes in the electron density profiles that mainly occur in line with the irregularities in the Earth's ionosphere. The analysis revealed that the F-region irregularities, associated with plasma bubbles occur mainly post sunset close to Earth's geomagnetic equator. Dependence on the solar cycle as well as distinctive seasonal variation is observed when analyzed for different years. In contrast to the other ionospheric remote sensing methods, GPS Radio Occultation technique uniquely personifies the activity of the plasma bubbles based on altitude resolution on a global scale.


Author(s):  
Dung Nguyen Thanh ◽  
Minh Le Huy ◽  
Christine Amory-Mazaudier ◽  
Rolland Fleury ◽  
Susumu Saito ◽  
...  

This paper presents the variations of the rate of change of Total Electron Content (TEC) index (ROTI), characterizing the occurrence of ionospheric plasma irregularities over Vietnam and neighboring countries in the Southeast Asian region using the continuous GPS data during the 2008-2018 period. The results showed that the occurrence of strong ROTI in all stations is maximum in equinox months March/April and September/October and depends on solar activity. The ROTI is weak during periods of low solar activity and strong during periods of high solar activity. There is an asymmetry between the two equinoxes. During maximum and declining phases of 2014-2016, occurrence rates in March equinox are larger than in September equinox, but during the descending period of 2010-2011, the occurrence rates in September equinox at almost all stations are larger than in March equinox. The correlation coefficients between the monthly occurrence rate of irregularities and the F10.7 solar index at the stations in the equatorward EIA crest region are higher than at those in the magnetic equatorial and the poleward EIA crest regions. The irregularity occurrence is high in the pre-midnight sector, maximum between 2000 LT to 2200 LT. The maximum irregularity occurrence is located around 4-5° degrees in latitude equator-ward away from the anomaly crests.


2021 ◽  
Vol 5 (4) ◽  
pp. 1-9
Author(s):  
K. K. Ajith ◽  
◽  
S. Tulasi Ram ◽  
GuoZhu Li ◽  
M. Yamamoto ◽  
...  

2013 ◽  
Vol 6 (8) ◽  
pp. 2169-2179 ◽  
Author(s):  
J. Danzer ◽  
B. Scherllin-Pirscher ◽  
U. Foelsche

Abstract. Radio occultation (RO) sensing is used to probe the earth's atmosphere in order to obtain information about its physical properties. With a main interest in the parameters of the neutral atmosphere, there is the need to perform a correction of the ionospheric contribution to the bending angle. Since this correction is an approximation to first order, there exists an ionospheric residual, which can be expected to be larger when the ionization is high (day versus night, high versus low solar activity). The ionospheric residual systematically affects the accuracy of the atmospheric parameters at low altitudes, at high altitudes (above 25–30 km) it even is an important error source. In climate applications this could lead to a time dependent bias which induces wrong trends in atmospheric parameters at high altitudes. The first goal of our work was to study and characterize this systematic residual error. In a second step we developed a simple correction method, based purely on observational data, to reduce this residual for large ensembles of RO profiles. In order to tackle this problem, we analyzed the bending angle bias of CHAMP and COSMIC RO data from 2001–2011. We could observe that the nighttime bending angle bias stays constant over the whole period of 11 yr, while the daytime bias increases from low to high solar activity. As a result, the difference between nighttime and daytime bias increases from about −0.05 μrad to −0.4 μrad. This behavior paves the way to correct the solar cycle dependent bias of daytime RO profiles. In order to test the newly developed correction method we performed a simulation study, which allowed to separate the influence of the ionosphere and the neutral atmosphere. Also in the simulated data we observed a similar increase in the bias in times from low to high solar activity. In this simulation we performed the climatological ionospheric correction of the bending angle data, by using the bending angle bias characteristics of a solar cycle as a correction factor. After the climatological ionospheric correction the bias of the simulated data improved significantly, not only in the bending angle but also in the retrieved temperature profiles.


Sign in / Sign up

Export Citation Format

Share Document