scholarly journals Seasonal features of geomagnetic activity: a study on the solar activity dependence

2021 ◽  
Vol 39 (5) ◽  
pp. 929-943
Author(s):  
Adriane Marques de Souza Franco ◽  
Rajkumar Hajra ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan

Abstract. Seasonal features of geomagnetic activity and their solar-wind–interplanetary drivers are studied using more than five solar cycles of geomagnetic activity and solar wind observations. This study involves a total of 1296 geomagnetic storms of varying intensity identified using the Dst index from January 1963 to December 2019, a total of 75 863 substorms identified from the SuperMAG AL/SML index from January 1976 to December 2019 and a total of 145 high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) events identified using the AE index from January 1975 to December 2017. The occurrence rates of the substorms and geomagnetic storms, including moderate (-50nT≥Dst>-100nT) and intense (-100nT≥Dst>-250nT) storms, exhibit a significant semi-annual variation (periodicity ∼6 months), while the super storms (Dst≤-250 nT) and HILDCAAs do not exhibit any clear seasonal feature. The geomagnetic activity indices Dst and ap exhibit a semi-annual variation, while AE exhibits an annual variation (periodicity ∼1 year). The annual and semi-annual variations are attributed to the annual variation of the solar wind speed Vsw and the semi-annual variation of the coupling function VBs (where V = Vsw, and Bs is the southward component of the interplanetary magnetic field), respectively. We present a detailed analysis of the annual and semi-annual variations and their dependencies on the solar activity cycles separated as the odd, even, weak and strong solar cycles.

2021 ◽  
Author(s):  
Adriane Marques de Souza Franco ◽  
Rajkumar Hajra ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan

Abstract. Seasonal features of geomagnetic activity and their solar wind-interplanetary drivers are studied using more than 5 solar cycles of geomagnetic activity and solar wind observations. This study involves a total of 1239 geomagnetic storms of varying intensity identified using the Dst index from January 1963 to December 2019, a total of 75863 substorms identified from the SML index from January 1976 to December 2019, a total of 145 high-intensity long-duration continuous auroral electrojet (AE) activity (HILDCAA) events identified using the AE index from January 1975 to December 2017. The occurrence rates of the substorms, geomagnetic storms, including moderate (−50 nT ≥ Dst > −100 nT) and intense (−100 nT ≥ Dst > −250 nT), exhibit a significant semi-annual variation (periodicity ~ 6 months), while the super storms (Dst ≤ −250 nT) and HILDCAAs do not exhibit any clear seasonal feature. The geomagnetic activity indices Dst and ap exhibit a semi-annual variation while AE exhibits an annual variation (periodicity ~ 1 year). The annual and semi-annual variations are found to be driven by the annual variation of the solar wind speed Vsw and the semi-annual variation of the coupling function V Bs (where V = Vsw, and Bs is the southward component of the interplanetary magnetic field), respectively. We present a detailed analysis of the annual and semi-annual variations and their dependencies on the solar activity cycles separated as the odd, even, weak and strong solar cycles.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
V. Vasanth ◽  
S. Umapathy

A detailed investigation on geoeffectiveness of CMEs associated with DH-type-II bursts observed during 1997–2008 is presented. The collected sample events are divided into two groups based on their association with CMEs related to geomagnetic storms Dst ≤−50 nT, namely, (i) geoeffective events and (ii) nongeoeffective events. We found that the geoeffective events have high starting frequency, low ending frequency, long duration, wider bandwidth, energetic flares, and CMEs than nongeoeffective events. The geoeffective events are found to have intense geomagnetic storm with mean Dst index (−150 nT). There exists good correlation between the properties of CMEs and flares for geoeffective events, while no clear correlation exists for nongeoeffective events. There exists a weak correlation for geoeffective events between (i) CME speed and Dst index (R=-0.51) and good correlation between (i) CME speed and solar wind speed (R=0.60), (ii) Dst index and solar wind speed (R=-0.64), and (iii) Dst index and southward magnetic field component (Bz) (R=0.80). From our study we conclude that the intense and long duration southward magnetic field component (Bz) and fast solar wind speed are responsible for geomagnetic storms, and the geomagnetic storms weakly depend on CME speed. About 22% (50/230) of the DH-type-II bursts are associated with geomagnetic storms. Therefore the DH-type-II bursts associated with energetic flares and CMEs are good indicator of geomagnetic storms.


Author(s):  
Vitalii Degtyarev ◽  
Georgy Popov ◽  
Svetlana Chudnenko

Recently a number of publications have appeared on the long and deep minimum in cycle 23 of solar activity. This interest is due to the fact that it turned out to be the longest and deepest in terms of the number of sunspots in the entire era of space exploration. The features of the minimum of cycle 23 of solar activity and the beginning of cycle 24 made it possible to assume that in the coming decades, a minimum of solar activity similar to the Dalton or Maunder minimum, leading to a global change in the earth's climate, may occur. Such assumptions make a detailed study of the influence of the minimum of solar cycle 23 on the parameters of the solar wind and the interplanetary magnetic field, as well as a comparison of this influence with similar manifestations in the three previous cycles very urgent. The work carried out statistical processing and analysis of data available in print and on the Internet on the indices of solar activity (W and F10.7), on geomagnetic activity, as well as on the parameters of the solar wind and interplanetary field. In contrast to other similar studies, when choosing time intervals for all cycles, only one — 12 months was used, which made it possible to exclude annual and semi-annual variations in solar wind parameters. For the considered minima of solar activity, the geoeffectiveness of the disturbed fluxes ICME, CIR, and Sheath was considered. A monotonic and very significant decrease in the geoeffectiveness of the ICME streams was found. Data processing on the hourly average values of the solar wind parameters at the minima of geomagnetic activity for 4 cycles confirmed the significant difference between cycle 23 and the previous ones in the behavior of the magnetic field. The cycle-by-cycle decrease in the geoeffectiveness of coronal ejections discussed in the press deserves a more detailed analysis using extensive data on magnetic activity indices.


1997 ◽  
Vol 15 (10) ◽  
pp. 1271-1290 ◽  
Author(s):  
G. K. Rangarajan ◽  
T. Iyemori

Abstract. Kp and Ap indices covering the period 1932 to 1995 are analysed in a fashion similar to that attempted by Bartels for the 1932–1961 epoch to examine the time variations in their characteristics. Modern analysis techniques on the extended data base are used for further insight. The relative frequencies of occurrence of Kp with different magnitudes and the seasonal and solar cycle dependences are seen to be remarkably consistent despite the addition of 35 years of observations. Many of the earlier features seen in the indices and special intervals are shown to be replicated in the present analysis. Time variations in the occurrence of prolonged periods of geomagnetic calm or of enhanced activity are presented and their relation to solar activity highlighted. It is shown that in the declining phase the occurrence frequencies of Kp = 4–5 (consecutively over 4 intervals) can be used as a precursor for the maximum sunspot number to be expected in the next cycle. The semi-annual variation in geomagnetic activity is re-examined utilising not only the Ap index but also the occurrence frequencies of Kp index with different magnitudes. Lack of dependence of the amplitude of semi-annual variation on sunspot number is emphasised. Singular spectrum analysis of the mean monthly Ap index shows some distinct periodic components. The temporal evolution of ~44 month, ~21 month and ~16 month oscillations are examined and it is postulated that while QBO and the 16 month oscillations could be attributed to solar wind and IMF oscillations with analogous periodicity, the 44 month variation is associated with a similar periodicity in recurrent high speed stream caused by sector boundary passage. It is reconfirmed that there could have been only one epoch around 1940 when solar wind speed could have exhibited a 1.3-year periodicity comparable to that seen during the post-1986 period.


2004 ◽  
Vol 22 (1) ◽  
pp. 93-100 ◽  
Author(s):  
E. W. Cliver ◽  
L. Svalgaard ◽  
A. G. Ling

Abstract. We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron) to the six-month wave in the aam index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998) over which the equinoctial effect accounts for ∼70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect) which increased the amount of the negative (toward Sun) [positive (away from Sun)] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS) also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954. Key words. Magnetosphere (solar wind – magnetosphere interactions; storms and substorms)


1997 ◽  
Vol 15 (8) ◽  
pp. 1015-1027 ◽  
Author(s):  
E. Feichter ◽  
R. Leitinger

Abstract. The double-sunspot-cycle variation in terrestrial magnetic activity has been well known for about 30 years. In 1990 we examined and compared the low-solar-activity (LSA) part of two consecutive cycles and predicted from this database and from published results the existence of a double-sunspot-cycle variation in total electron content (TEC) of the ionosphere too. This is restricted to noontime when the semi-annual component is well developed. Since 1995 we have had enough data for the statistical processing for high-solar-activity (HSA) conditions of two successive solar cycles. The results confirm the LSA findings. The annual variation of TEC shows a change from an autumn maximum in cycle 21 to a spring maximum during the next solar cycle. Similar to the aa indices for geomagnetic activity the TEC data show a phase change in the 1-year component of the Fourier transform of the annual variation. Additionally we found the same behaviour in the F-layer peak electron density (Nmax) over four solar cycles. This indicates that there exists a double-sunspot-cycle variation in the F-layer ionization over Europe too. It is very likely coupled with the 22-year cycle in geomagnetic activity.


2009 ◽  
Vol 27 (5) ◽  
pp. 1909-1914 ◽  
Author(s):  
A. Yoshida

Abstract. Physical meaning of the equinoctial effect for semi-annual variation in geomagnetic activity is investigated based on the three-hourly am index and solar wind parameters. When the z component of the interplanetary magnetic field (IMF) in geocentric solar magnetospheric (GSM) coordinates is southward, am indices are well correlated with BsVx2, where Bs is the southward component of the IMF and Vx is the solar wind velocity in the sun-earth direction. The am-BsVx2 relationship, however, depends on the range of Vx2: the am in higher ranges of Vx2 tends to be larger than am in lower ranges of Vx2 for the same value of BsVx2 for both equinoctial and solstitial epochs. Using the data sets of the same Vx2 range, it is shown that distribution of points in the am-BsVx2 diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVx2 bin in solstitial epochs are closely consistent with those in equinoctial epochs, if Vx2 for each point at solstices are reduced to Vx2sin2 (Ψ) where Ψ is the geomagnetic colatitude of the sub-solar point. Further, it is shown that monthly averages of the am index in the long period is well correlated with the values of sin2(ψ) for the middle day of each month. These findings indicate that the factor that contributes to the generation of geomagnetic disturbance is not the velocity of the solar wind, but the component of the solar wind velocity perpendicular to the dipole axis of the geomagnetic field. The magnitude of the perpendicular velocity component varies semi-annually even if the solar wind velocity remains constant, which is considered to be the long-missed key factor causing the equinoctial effect.


2011 ◽  
Vol 7 (S286) ◽  
pp. 200-209 ◽  
Author(s):  
E. Echer ◽  
B. T. Tsurutani ◽  
W. D. Gonzalez

AbstractThe recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, Rz, interplanetary magnetic field (IMF) magnitude Bo and solar wind speed Vsw were the lowest during the space era. Furthermore, the variance of the IMF southward Bz component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.


2021 ◽  
Author(s):  
Dorota Przepiórka ◽  
Barbara Matyjasiak ◽  
Agata Chuchra ◽  
Hanna Rothkaehl

<p>Mid-latitude trough (MIT) is the distinct structure observed in Earth’s ionosphere at high latitudes especially at the nighttimes. The phenomenon is observed at both hemispheres. As it resides at the topside ionosphere in the sub-auroral region, its behaviour and properties are highly sensitive to the solar and geomagnetic activity. Generally as the geomagnetic activity is more pronounced the MIT is observed at lower latitudes, it also deepens and becomes much more distinct in comparison to the low magnetic activity periods. MIT responds as well to the rapid changes in geomagnetic conditions, as are the geomagnetic storms, mainly caused by the CMEs. </p><p>Based on the observations gathered by DEMETER data between 2005 and 2010 years  we present a set of geomagnetic storm cases and how the MIT properties has been changing as the storm evolves. We also discuss how it corresponds to the current solar activity and their evolutionary history  described by a set of different parameters.</p>


Sign in / Sign up

Export Citation Format

Share Document