scholarly journals Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

2013 ◽  
Vol 10 (3) ◽  
pp. 1675-1691 ◽  
Author(s):  
M. Schrumpf ◽  
K. Kaiser ◽  
G. Guggenberger ◽  
T. Persson ◽  
I. Kögel-Knabner ◽  
...  

Abstract. Conceptual models suggest that stability of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF) were analysed for OC, total nitrogen (TN), δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates) as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC) matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and nutrient source for subsurface microorganisms throughout the profile. Declining specific mineralization rates with soil depth confirm greater stability of OC in subsoils across sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining specific mineralization rates with increasing contributions of HF-OC to bulk soil OC, and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC suggest that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results indicate that association with minerals is the most important factor in stabilization of OC in soils, irrespective of vegetation, soil type, and land use.

2012 ◽  
Vol 9 (9) ◽  
pp. 13085-13133 ◽  
Author(s):  
M. Schrumpf ◽  
K. Kaiser ◽  
G. Guggenberger ◽  
T. Persson ◽  
I. Kögel-Knabner ◽  
...  

Abstract. Conceptual models suggest that stability and age of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Various tools like density fractionation, mineralization experiments, and radiocarbon analyses have been used to study the importance of these mechanisms. We systematically apply them to a range of European soils to test whether general controls emerge even for soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled in 10 cm depth intervals to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF) were analysed for OC, total nitrogen (TN), δ13C, and Δ14C. Bulk samples were also incubated to determine mineralizable OC. Declining OC-normalized CO2 release and increasing age with soil depth confirm greater stability of OC in subsoils across sites. Depth profiles of LF-OC matched those of roots, which in turn reflect plant functional types in soil profiles not subject to ploughing. Modern Δ14C signatures and positive correlation between mineralizable C and fLF-OC indicate the fLF is an easily available energy and nutrient source for subsurface microbes. Fossil C derived from the geogenic parent material affected the age of OC especially in the LF at three study sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining OC-normalized CO2 release rates with increasing contributions of HF-OC to bulk soil OC and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. The decrease in Δ14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC indicate that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results showed that association with minerals is the most important factor in stabilization of OC in soils.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 296 ◽  
Author(s):  
D. Das ◽  
B. S. Dwivedi ◽  
V. K. Singh ◽  
S. P. Datta ◽  
M. C. Meena ◽  
...  

Decline in soil organic carbon (SOC) content is considered a key constraint for sustenance of rice–wheat system (RWS) productivity in the Indo-Gangetic Plain region. We, therefore, studied the effects of fertilisers and manures on SOC pools, and their relationships with crop yields after 18 years of continuous RWS. Total organic C increased significantly with the integrated use of fertilisers and organic sources (from 13 to 16.03gkg–1) compared with unfertilised control (11.5gkg–1) or sole fertiliser (NPKZn; 12.17gkg–1) treatment at 0–7.5cm soil depth. Averaged across soil depths, labile fractions like microbial biomass C (MBC) and permanganate-oxidisable C (PmOC) were generally higher in treatments that received farmyard manure (FYM), sulfitation pressmud (SPM) or green gram residue (GR) along with NPK fertiliser, ranging from 192 to 276mgkg–1 and from 0.60 to 0.75gkg–1 respectively compared with NPKZn and NPK+cereal residue (CR) treatments, in which MBC and PmOC ranged from 118 to 170mgkg–1 and from 0.43 to 0.57gkg–1 respectively. Oxidisable organic C fractions revealed that very labile C and labile C fractions were much larger in the NPK+FYM or NPK+GR+FYM treatments, whereas the less-labile C and non-labile C fractions were larger under control and NPK+CR treatments. On average, Walkley–Black C, PmOC and MBC contributed 29–46%, 4.7–6.6% and 1.16–2.40% towards TOC respectively. Integrated plant nutrient supply options, except NPK+CR, also produced sustainable high yields of RWS.


Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 181 ◽  
Author(s):  
Deb Aryal ◽  
Danilo Morales Ruiz ◽  
César Tondopó Marroquín ◽  
René Pinto Ruiz ◽  
Francisco Guevara Hernández ◽  
...  

Land use change from forests to grazing lands is one of the important sources of greenhouse gas emissions in many parts of the tropics. The objective of this study was to analyze the extent of soil organic carbon (SOC) loss from the conversion of native forests to pasturelands in Mexico. We analyzed 66 sets of published research data with simultaneous measurements of soil organic carbon stocks between native forests and pasturelands in Mexico. We used a generalized linear mixed effect model to evaluate the effect of land use change (forest versus pasture), soil depth, and original native forest types. The model showed that there was a significant reduction in SOC stocks due to the conversion of native forests to pasturelands. The median loss of SOC ranged from 31.6% to 52.0% depending upon the soil depth. The highest loss was observed in tropical mangrove forests followed by highland tropical forests and humid tropical forests. Higher loss was detected in upper soil horizon (0–30 cm) compared to deeper horizons. The emissions of CO2 from SOC loss ranged from 46.7 to 165.5 Mg CO2 eq. ha−1 depending upon the type of original native forests. In this paper, we also discuss the effect that agroforestry practices such as silvopastoral arrangements and other management practices like rotational grazing, soil erosion control, and soil nutrient management can have in enhancing SOC stocks in tropical grasslands. The results on the degree of carbon loss can have strong implications in adopting appropriate management decisions that recover or retain carbon stocks in biomass and soils of tropical livestock production systems.


2014 ◽  
Vol 14 (2) ◽  
pp. 103-108 ◽  
Author(s):  
S Bhandari ◽  
S Bam

The study was carried out in Chovar village of Kritipur Municipality, Kathmandu to compare the soil organic carbon (SOC) of three main land use types namely forest, agricultural and barren land and to show how land use and management are among the most important determinants of SOC stock. Stratified random sampling method was used for collecting soil samples. Walkley and Black method was applied for measuring SOC. Land use and soil depth both affected SOC stock significantly. Forest soil had higher SOC stock (98 t ha-1) as compared to agricultural land with 36.6 t ha-1 and barren land with 83.6 t ha-1. Similarly, the SOC in terms of CO22-1, 79.27 to 22.02 CO2-e ha-1 and 121.11 to 80.74 CO2-1 for 0- 20 cm to 40-60 cm soil depth, respectively. Bulk density (BD) was found less in forest soil compared to other lands at all depths, which showed negative correlation with SOC. The study showed a dire need to increase current soil C stocks which can be achieved through improvements in land use and management practices, particularly through conservation and restoration of degraded forests and soils.   DOI: http://dx.doi.org/10.3126/njst.v14i2.10422   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 103-108


2020 ◽  
Author(s):  
Dedy Antony ◽  
Jo Clark ◽  
Chris Collins ◽  
Tom Sizmur

<p>Soils are the largest terrestrial pool of organic carbon and it is now known that as much as 50% of soil organic carbon (SOC) can be stored below 30 cm. Therefore, knowledge of the mechanisms by which soil organic carbon is stabilised at depth and how land use affects this is important.</p><p>This study aimed to characterise topsoil and subsoil SOC and other soil properties under different land uses to determine the SOC stabilisation mechanisms and the degree to which SOC is vulnerable to decomposition. Samples were collected under three different land uses: arable, grassland and deciduous woodland on a silty-clay loam soil and analysed for TOC, pH, C/N ratio and texture down the first one metre of the soil profile. Soil organic matter (SOM) physical fractionation and the extent of fresh mineral surfaces were also analysed to elucidate SOM stabilisation processes.</p><p>Results showed that soil texture was similar among land uses and tended to become more fine down the soil profile, but pH did not significantly change with soil depth. Total C, total N and C/N ratio decreased down the soil profile and were affected by land use in the order woodland > grassland > arable. SOM fractionation revealed that the free particulate organic matter (fPOM) fraction was significantly greater in both the topsoil and subsoil under woodland than under grassland or arable. The mineral associated OC (MinOC) fraction was proportionally greater in the subsoil compared to topsoil under all land uses: arable > grassland > woodland. Clay, Fe and Mn availability play a significant role (R<sup>2</sup>=0.87) in organic carbon storage in the top 1 m of the soil profile.</p><p>It is evidently clear from the findings that land use change has a significant effect on the dynamics of the SOC pool at depth, related to litter inputs to the system.</p>


Geoderma ◽  
2005 ◽  
Vol 128 (1-2) ◽  
pp. 63-79 ◽  
Author(s):  
Bettina John ◽  
Tamon Yamashita ◽  
Bernard Ludwig ◽  
Heiner Flessa

Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 41 ◽  
Author(s):  
Guo-Ce Xu ◽  
Zhan-Bin Li ◽  
Peng Li ◽  
Ke-Xin Lu ◽  
Yun Wang

Soil organic carbon (SOC) plays an important role in maintaining and improving soil fertility and quality, in addition to mitigating climate change. Understanding SOC spatial variability is fundamental for describing soil resources and predicting SOC. In this study, SOC content and SOC mass were estimated based on a soil survey of a small watershed in the Dan River, China. The spatial heterogeneity of SOC distribution and the impacts of land-use types, elevation, slope, and aspect on SOC were also assessed. Field sampling was carried out based on a 100 m by 100 m grid system overlaid on the topographic map of the study area, and samples were collected in three soil layers to a depth of 40 cm. In total, 222 sites were sampled and 629 soil samples were collected. The results showed that classical kriging could successfully interpolate SOC content in the watershed. Contents of SOC showed strong spatial heterogeneity based on the values of the coefficient of variation and the nugget ratio, and this was attributed largely to the type of land use. The range of the semi-variograms increased with increasing soil depth. The SOC content in the soil profile decreased as soil depth increased, and there were significant (P < 0.01) differences among the three soil layers. Land use had a great impact on the SOC content. ANOVA indicated that the spatial variation of SOC contents under different land use types was significant (P < 0.05). The SOC mass of different land-use types followed the order grassland > forestland > cropland. Mean SOC masses of grassland, forestland, and cropland at a depth of 0–40 cm were 5.87, 5.61, and 5.07 kg m–2, respectively. The spatial variation of SOC masses under different land-use types was significant (P < 0.05). ANOVA also showed significant (P < 0.05) impact of aspect on SOC mass in soil at 0–40 cm. Soil bulk density played an important role in the assessment of SOC mass. In conclusion, carbon in soils in the source area of the middle Dan River would increase with conversion from agricultural land to forest or grassland.


2002 ◽  
Vol 32 (5) ◽  
pp. 805-812 ◽  
Author(s):  
J S Bhatti ◽  
M J Apps ◽  
C Tarnocai

This study compared three estimates of carbon (C) contained both in the surface layer (0–30 cm) and the total soil pools at polygon and regional scales and the spatial distribution in the three prairie provinces of western Canada (Alberta, Saskatchewan, and Manitoba). The soil C estimates were based on data from (i) analysis of pedon data from both the Boreal Forest Transect Case Study (BFTCS) area and from a national-scale soil profile database; (ii) the Canadian Soil Organic Carbon Database (CSOCD), which uses expert estimation based on soil characteristics; and (iii) model simulations with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS2). At the polygon scale, good agreement was found between the CSOCD and pedon (the first method) total soil carbon values. Slightly higher total soil carbon values obtained from BFTCS averaged pedon data (the first method), as indicated by the slope of the regression line, may be related to micro- and meso-scale geomorphic and microclimate influences that are not accounted for in the CSOCD. Regional estimates of organic C from these three approaches for upland forest soils ranged from 1.4 to 7.7 kg C·m–2 for the surface layer and 6.2 to 27.4 kg C·m–2 for the total soil. In general, the CBM-CFS2 simulated higher soil C content compared with the field observed and CSOCD soil C estimates, but showed similar patterns in the total soil C content for the different regions. The higher soil C content simulated with CBM-CFS2 arises in part because the modelled results include forest floor detritus pool components (such as coarse woody debris, which account for 4–12% of the total soil pool in the region) that are not included in the other estimates. The comparison between the simulated values (the third method) and the values obtained from the two empirical approaches (the first two methods) provided an independent test of CBM-CFS2 soil simulations for upland forests soils. The CSOCD yielded significantly higher C content for peatland soils than for upland soils, ranging from 14.6 to 28 kg C·m–2 for the surface layer and 60 to 181 kg C·m–2 for the total peat soil depth. All three approaches indicated higher soil carbon content in the boreal zone than in other regions (subarctic, grassland).


Sign in / Sign up

Export Citation Format

Share Document