scholarly journals Coupling δ<sup>2</sup>H and δ<sup>18</sup>O biomarker results yields information on relative humidity and isotopic composition of precipitation – a climate transect validation study

2015 ◽  
Vol 12 (12) ◽  
pp. 3913-3924 ◽  
Author(s):  
M. Tuthorn ◽  
R. Zech ◽  
M. Ruppenthal ◽  
Y. Oelmann ◽  
A. Kahmen ◽  
...  

Abstract. The hydrogen isotopic composition (δ2H) of leaf waxes, especially of n-alkanes (δ2Hn-alkanes), is increasingly used for paleohydrological and paleoclimate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water, which are both recorded in leaf wax δ2H values. In order to overcome this limitation, Zech M. et al. (2013) proposed a coupled δ2Hn-alkanes–δ18Osugar biomarker approach. This coupled approach allows for calculating (i) biomarker-based "reconstructed" δ2Hδ18O values of leaf water (δ2Hδ18Oleaf water), (ii) biomarker-based reconstructed deuterium excess (d-excess) of leaf water, which mainly reflects evapotranspirative enrichment and which can be used to reconstruct relative air humidity (RH) and (iii) biomarker-based reconstructed δ2Hδ18Oprecipitation values. Here we present a climate transect validation study by coupling new results from δ2H analyses of n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously measured δ18O results obtained for plant-derived sugars. Accordingly, both the reconstructed RH and δ2Hδ18Oprecipitation values correlate highly significantly with actual RH and δ2Hδ18Oprecipitation values. We conclude that compared to single δ2Hn-alkane or δ18Osugar records, the proposed coupled δ2Hn-alkane–δ18Osugar biomarker approach will allow more robust δ2Hδ18Oprecipitation reconstructions in future paleoclimate research. Additionally, the proposed coupled δ2Hn-alkane–δ18Osugar biomarker approach allows for the establishment of a "paleohygrometer", more specifically, the reconstruction of mean summer daytime RH changes/history.

2015 ◽  
Vol 12 (3) ◽  
pp. 2459-2489
Author(s):  
M. Tuthorn ◽  
R. Zech ◽  
M. Ruppenthal ◽  
Y. Oelmann ◽  
A. Kahmen ◽  
...  

Abstract. The δ2H isotopic composition of leaf waxes is used increasingly for paleohydrological and -climate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water. We analyzed δ2H on n-alkanes and fatty acids in topsoils along a climate transect in Argentina, for which we had previously measured δ18O on plant-derived sugars. Our results indicate that leaf wax biomarker δ2H values (δ2Hlipids) primarily reflect δ2Hsource water (precipitation), but are modulated by evapotranspirative enrichment. A mechanistic model is able to produce the main trends in δ2Hlipids along the transect, but seems to slightly underestimate evapotranspirative enrichment in arid regions and overestimate it in grass-dominated ecosystems. Furthermore, the (i) coupling of the δ2Hlipid and δ18Osugar biomarker results and (ii) application of biosynthetic fractionation factors allows calculating the δ2H-δ18O isotopic composition of leaf water along the transect. This also yields the deuterium excess (d excess) of leaf water, which mainly reflects evapotranspirative enrichment, and can be used to model relative air humidity (RH). The high correlation of modeled (reconstructed based on biomarker results) and measured RH, as well as the good agreement between modeled and actual δ2H and δ18O of precipitation along the transect lends support to the coupled δ2Hlipid and δ18Osugar biomarker approach for future paleoclimate research.


2019 ◽  
Author(s):  
Johannes Hepp ◽  
Bruno Glaser ◽  
Dieter Juchelka ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of paleoprecipitation based on δ2Hn-alkane alone can be challenging due to the overprint of the source water isotopic signal by leaf-water enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which were grown under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2020 ◽  
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotopic composition of leaf wax-derived biomarkers, e.g. long chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimatology research. However, a direct reconstruction of the isotopic composition of source water based on δ2Hn-alkane alone can be challenging due to the alteration of the soil water isotopic signal by leaf-water heavy-isotope enrichment. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this effect and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of the plant species Eucalyptus globulus, Vicia faba var. minor and Brassica oleracea var. medullosa, which grew under controlled conditions. We addressed the questions (i) do δ2Hn-alkane and δ18Osugar values allow precise reconstructions of leaf water isotope composition, (ii) how accurately does the reconstructed leaf-water-isotope composition enables relative humidity (RH) reconstruction in which the plants grew, and (iii) does the coupling of δ2Hn-alkane and δ18Osugar enable a robust source water calculation? For all investigated species, the alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. With regard to hemicellulose-derived monosaccharides, arabinose and xylose were most abundant and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf-water and δ18Oleaf-water, respectively (r2 = 0.45 and 0.85, respectively; p 


2021 ◽  
Author(s):  
Bruk Lemma ◽  
Lucas Bittner ◽  
Bruno Glaser ◽  
Seifu Kebede ◽  
Sileshi Nemomissa ◽  
...  

AbstractThe hydrogen isotopic composition of leaf wax–derived n-alkane (δ2Hn-alkane) and oxygen isotopic composition of hemicellulose–derived sugar (δ18Osugar) biomarkers are valuable proxies for paleoclimate reconstructions. Here, we present a calibration study along the Bale Mountains in Ethiopia to evaluate how accurately and precisely the isotopic composition of precipitation is imprinted in these biomarkers. n-Alkanes and sugars were extracted from the leaf and topsoil samples and compound–specific δ2Hn-alkane and δ18Osugar values were measured using a gas chromatograph–thermal conversion–isotope ratio mass spectrometer (GC–TC–IRMS). The weighted mean δ2Hn-alkane and δ18Osugar values range from − 186 to − 89‰ and from + 27 to + 46‰, respectively. Degradation and root inputs did not appear to alter the isotopic composition of the biomarkers in the soil samples analyzed. Yet, the δ2Hn-alkane values show a statistically significant species dependence and δ18Osugar yielded the same species–dependent trends. The reconstructed leaf water of Erica arborea and Erica trimera is 2H– and 18O–enriched by + 55 ± 5 and + 9 ± 1‰, respectively, compared to precipitation. By contrast, Festuca abyssinica reveals the most negative δ2Hn-alkane and least positive δ18Osugar values. This can be attributed to “signal–dampening” caused by basal grass leaf growth. The intermediate values for Alchemilla haumannii and Helichrysum splendidum can be likely explained with plant physiological differences or microclimatic conditions affecting relative humidity (RH) and thus RH–dependent leaf water isotope enrichment. While the actual RH values range from 69 to 82% (x̄ = 80 ± 3.4%), the reconstructed RH values based on a recently suggested coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach yielded a mean of 78 ± 21%. Our findings corroborate (i) that vegetation changes, particularly in terms of grass versus non–grassy vegetation, need to be considered in paleoclimate studies based on δ2Hn-alkane and δ18Osugar records and (ii) that the coupled δ2Hn-alkane –δ18Osugar (paleo–) hygrometer approach holds great potential for deriving additional paleoclimatic information compared to single isotope approaches.


2016 ◽  
Vol 13 (19) ◽  
pp. 5527-5539 ◽  
Author(s):  
Sandra Mariam Heinzelmann ◽  
Nicole Jane Bale ◽  
Laura Villanueva ◽  
Danielle Sinke-Schoen ◽  
Catharina Johanna Maria Philippart ◽  
...  

Abstract. Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium-to-hydrogen (D / H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor ε between fatty acids and water (εlipid/water) ranged between −172 and −237 ‰, the algal-derived polyunsaturated fatty acid nC20:5 generally being the most D-depleted (−177 to −235 ‰) and nC18:0 the least D-depleted fatty acid (−172 to −210 ‰). The in general highly D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The εlipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 polyunsaturated fatty acids, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative εlipid/water values) can potentially be explained by an increased contribution of heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a promising tool to assess the community metabolism of coastal plankton potentially in combination with the isotopic analysis of more specific biomarker lipids.


Sign in / Sign up

Export Citation Format

Share Document