scholarly journals Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010

2015 ◽  
Vol 12 (22) ◽  
pp. 6637-6653 ◽  
Author(s):  
M. B. Collins ◽  
E. T. A. Mitchard

Abstract. Forests with high above-ground biomass (AGB), including those growing on peat swamps, have historically not been thought suitable for biomass mapping and change detection using synthetic aperture radar (SAR). However, by integrating L-band (λ = 0.23 m) SAR from the ALOS and lidar from the ICESat Earth-Observing satellites with 56 field plots, we were able to create a forest biomass and change map for a 10.7 Mha section of eastern Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we estimated changes in both forest area and AGB. We estimate that there was 274 ± 68 Tg AGB remaining in natural forest (≥ 20 m height) in the study area in 2007, with this stock reducing by approximately 11.4 % over the subsequent 3 years. A total of 137.4 kha of the study area was deforested between 2007 and 2010, an average rate of 3.8 % yr−1. The ability to attribute forest loss to different initial biomass values allows for far more effective monitoring and baseline modelling for avoided deforestation projects than traditional, optical-based remote sensing. Furthermore, given SAR's ability to penetrate the smoke and cloud which normally obscure land cover change in this region, SAR-based forest monitoring can be relied on to provide frequent imagery. This study demonstrates that, even at L-band, which typically saturates at medium biomass levels (ca. 150 Mg ha−1), in conjunction with lidar data, it is possible to make reliable estimates of not just the area but also the carbon emissions resulting from land use change.

2015 ◽  
Vol 12 (11) ◽  
pp. 8573-8614
Author(s):  
M. B. Collins ◽  
E. T. A. Mitchard

Abstract. Forests with high above ground biomass (AGB), including those growing on peat swamps, have historically not been thought suitable for biomass mapping and change detection using Synthetic Aperture Radar (SAR). However, by integrating L-band (λ = 0.23 m) SAR with lidar data from the ALOS and ICESat earth-observing satellites respectively, and 56 forest plots, we were able to create a forest biomass and change map for a 10.7 Mha section of eastern Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we estimated changes in both forest area and AGB. We estimate that there were 274 ± 68 Tg AGB remaining in natural forest (≥ 20 m height) in the study area in 2007, with this stock reducing by approximately 11.4% over the subsequent 3 years. A total of 137.4 kha of the study area were deforested between 2007 and 2010; an average rate of 3.8% yr−1. The ability to attribute forest loss to different initial biomass values allows for far more effective monitoring and baseline modelling for avoided deforestation projects than traditional, optical-based remote sensing. Furthermore, given SAR's ability to penetrate the smoke and cloud which normally obscure land cover change in this region, SAR-based forest monitoring can be relied on to provide frequent imagery. This study demonstrates that even at L-band, which typically saturates at medium biomass levels (ca. 150 Mg ha−1), it is possible to make reliable estimates of not just the area but the carbon emissions resulting from land use change.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10055
Author(s):  
Yongjie Ji ◽  
Jimao Huang ◽  
Yilin Ju ◽  
Shipeng Guo ◽  
Cairong Yue

Forest structure plays an important role in forest biomass inversion using synthetic aperture radar (SAR) backscatter. Synthetic aperture radar (SAR) sensors with long-wavelength have the potentiality to provide reliable and timely forest biomass inversion for their ability of deep penetration into the forest. L-band SAR backscatter shows useful for forest above-ground biomass (AGB) estimation. However, the way that forest structure mediating the biomass-backscatter affects the improvement of the related biomass estimation accuracy. In this paper, we have investigated L-band SAR backscatter sensitivity to forests with different mean canopy density, mean tree height and mean DBH (diameter at breast height) at the sub-compartment level. The forest species effects on their relationship were also considered in this study. The linear correlation coefficient R, non-linear correlation parameter, Maximal Information Coefficient (MIC), and the determination coefficient R2 from linear function, Logarithmic function and Quadratic function were used in this study to analyze forest structural properties effects on L-band SAR backscatter. The HV channel, which is more sensitive than HH to forest structure parameters, was chosen as the representative of SAR backscatter. 6037 sub-compartment were involved in the analysis. Canopy density showed a great influence on L-band backscatter than mean forest height and DBH. All of the R between canopy density and L-band backscatter were greater than 0.7 during the forest growth cycle. The sensitivity of L-band backscatter to mean forest height depends on forest canopy density. When canopy density was lower than 0.4, R values between mean forest height are smaller than 0.5. In contrast, the values of R were greater than 0.8 if canopy density was higher than 0.4. The sensitivity SAR backscatter to DBH fluctuated with canopy density, but it only showed obvious sensitivity when canopy density equals to 0.6, where both the linear and non-liner correlation values are higher than others. However, their effects on L-bang HV backscatter are affected by forest species, the effects on three forest structural parameters depend on tree species.


2003 ◽  
Vol 27 (1) ◽  
pp. 88-106 ◽  
Author(s):  
Kevin Lim ◽  
Paul Treitz ◽  
Michael Wulder ◽  
Benoît St-Onge ◽  
Martin Flood

Light detection and ranging (LiDAR) technology provides horizontal and vertical information at high spatial resolutions and vertical accuracies. Forest attributes such as canopy height can be directly retrieved from LiDAR data. Direct retrieval of canopy height provides opportunities to model above-ground biomass and canopy volume. Access to the vertical nature of forest ecosystems also offers new opportunities for enhanced forest monitoring, management and planning.


2021 ◽  
Vol 13 (22) ◽  
pp. 4516
Author(s):  
Helen Blue Parache ◽  
Timothy Mayer ◽  
Kelsey E. Herndon ◽  
Africa Ixmucane Flores-Anderson ◽  
Yang Lei ◽  
...  

Forest stand height (FSH), or average canopy height, serves as an important indicator for forest monitoring. The information provided about above-ground biomass for greenhouse gas emissions reporting and estimating carbon storage is relevant for reporting for Reducing Emissions from Deforestation and Forest Degradation (REDD+). A novel forest height estimation method utilizing a fusion of backscatter and Interferometric Synthetic Aperture Radar (InSAR) data from JAXA’s Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) is applied to a use case in Savannakhet, Lao. Compared with LiDAR, the estimated height from the fusion method had an RMSE of 4.90 m and an R2 of 0.26. These results are comparable to previous studies using SAR estimation techniques. Despite limitations of data quality and quantity, the Savannakhet, Lao use case demonstrates the applicability of these techniques utilizing L-band SAR data for estimating FSH in tropical forests and can be used as a springboard for use of L-band data from the future NASA-ISRO SAR (NISAR) mission.


2018 ◽  
Vol 10 (10) ◽  
pp. 1550 ◽  
Author(s):  
Martyna Stelmaszczuk-Górska ◽  
Mikhail Urbazaev ◽  
Christiane Schmullius ◽  
Christian Thiel

The estimation of above-ground biomass (AGB) in boreal forests is of special concern as it constitutes the highest carbon pool in the northern hemisphere. In particularly, monitoring of the forests in the Russian Federation is important as some regions have not been inventoried for many years. This study explores the combination of multi-frequency, multi-polarization, and multi-temporal radar data as one key approach to provide an accurate estimate of forest biomass. The data from L-band Advanced Land Observing Satellite 2 (ALOS-2) Phased Array L-Band Synthetic Aperture Radar 2 (PALSAR-2), together with C-band RADARSAT-2 data, were applied for AGB estimation. Backscatter coefficients from L- and C-band radar were used independently and in combination with a non-parametric model to retrieve AGB data for a boreal forest in Siberia (Krasnoyarskiy Kray). AGB estimation was performed using the random forests machine learning algorithm. The results demonstrated that high estimation accuracies can be achieved at a spatial resolution of 0.25 ha. When the L-band data alone were used for the retrieval, a corrected root-mean-square error (RMSEcor) of 29.4 t ha−1 was calculated. A marginal decrease in RMSEcor was observed when only the filtered L-band backscatter data, without ratio and texture, were used (29.1 t ha−1). The inclusion of the C-band data reduced the over and underestimation; the bias was reduced from 5.5 t ha−1 to 4.7 t ha−1; and a RMSEcor of 30.2 t ha−1 was calculated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Unmesh Khati ◽  
Marco Lavalle ◽  
Gulab Singh

Physics-based algorithms estimating large-scale forest above-ground biomass (AGB) from synthetic aperture radar (SAR) data generally use airborne laser scanning (ALS) or grid of national forest inventory (NFI) to reduce uncertainties in the model calibration. This study assesses the potential of multitemporal L-band ALOS-2/PALSAR-2 data to improve forest AGB estimation using the three-parameter water cloud model (WCM) trained with field data from relatively small (0.1 ha) plots. The major objective is to assess the impact of the high uncertainties in field inventory data due to relatively smaller plot size and temporal gap between acquisitions and ground truth on the AGB estimation. This study analyzes a time series of twenty-three ALOS-2 dual-polarized images spanning 5 years acquired under different weather and soil moisture conditions over a subtropical forest test site in India. The WCM model is trained and validated on individual acquisitions to retrieve forest AGB. The accuracy of the generated AGB products is quantified using the root mean square error (RMSE). Further, we use a multitemporal AGB retrieval approach to improve the accuracy of the estimated AGB. Changes in precipitation and soil moisture affect the AGB retrieval accuracy from individual acquisitions; however, using multitemporal data, these effects are mitigated. Using a multitemporal AGB retrieval strategy, the accuracy improves by 15% (55 Mg/ha RMSE) for all field plots and by 21% (39 Mg/ha RMSE) for forests with AGB less than 100 Mg/ha. The analysis shows that any ten multitemporal acquisitions spanning 5 years are sufficient for improving AGB retrieval accuracy over the considered test site. Furthermore, we use allometry from colocated field plots and Global Ecosystem Dynamics Investigation (GEDI) L2A height metrics to produce GEDI-derived AGB estimates. Despite the limited co-location of GEDI and field data over our study area, within the period of interest, the preliminary analysis shows the potential of jointly using the GEDI-derived AGB and multi-temporal ALOS-2 data for large-scale AGB retrieval.


2021 ◽  
Vol 42 (13) ◽  
pp. 4989-5013
Author(s):  
Henrique Luis Godinho Cassol ◽  
Luiz Eduardo De Oliveira E Cruz De Aragão ◽  
Elisabete Caria Moraes ◽  
João Manuel De Brito Carreiras ◽  
Yosio Edemir Shimabukuro

2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


Sign in / Sign up

Export Citation Format

Share Document