scholarly journals Soils rich in biological ice-nucleating particles abound in ice-nucleating macromolecules likely produced by fungi

2018 ◽  
Vol 15 (14) ◽  
pp. 4381-4385 ◽  
Author(s):  
Franz Conen ◽  
Mikhail V. Yakutin

Abstract. Soil organic matter carries ice-nucleating particles (INPs) the origin of which is hard to define and that are active at slight supercooling. The discovery and characterization of INPs produced by the widespread soil fungus Mortierella alpina permits a more targeted investigation of the likely origin of INPs in soils. We searched for INPs with characteristics similar to those reported for M. alpina in 20 soil samples from four areas in the northern midlatitudes and one area in the tropics. In the 15 samples where we could detect such INPs, they constituted between 1 and 94 % (median 11 %) of all INPs active at −10 ∘C or warmer (INP−10) associated with soil particles < 5 µm. Their concentration increased overproportionately with the concentration of INP−10 in soil and seems to be greater in colder climates. Large regional differences and prevalently high concentrations allow us to make inferences regarding their potential role in the atmosphere and the soil.

2018 ◽  
Author(s):  
Franz Conen ◽  
Mikhail V. Yakutin

Abstract. Soil organic matter carries ice nucleating particles (INP) of which the origin is hard to define and that are active at slight supercooling. The discovery and characterisation of INP produced by the widespread soil fungus Mortierella alpina permits a more targeted investigation of the likely origin of INP in soils. We searched for INP with characteristics similar to those reported for M. alpina (INPM-like) in 20 soil samples from four areas in the northern midlatitudes and one area in the tropics. In the 15 samples where we could detect INPM-like, they constituted between 1 and 94 % (median 11 %) of all INP active at −10 °C or warmer associated with soil particles


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


Author(s):  
Xiaomeng Wei ◽  
Tida Ge ◽  
Chuanfa Wu ◽  
Shuang Wang ◽  
Kyle Mason-Jones ◽  
...  

2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

&lt;p&gt;Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.&lt;/p&gt;&lt;p&gt;The study is performed in Mediterranean Croatia (44&amp;#176; 05&amp;#8217; N; 15&amp;#176; 22&amp;#8217; E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed &lt;em&gt;Quercus ssp.&lt;/em&gt; and &lt;em&gt;Juniperus ssp.&lt;/em&gt; forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22&lt;sup&gt;nd&lt;/sup&gt; 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31&lt;sup&gt;st&lt;/sup&gt; and September 5&lt;sup&gt;th &lt;/sup&gt;2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE&lt;sub&gt;p&lt;/sub&gt;) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.&lt;/p&gt;&lt;p&gt;The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE&lt;sub&gt;p &lt;/sub&gt;(Spectroscopy dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 1.91; Sentinel-2 dataset RMSE&lt;sub&gt;p&lt;/sub&gt; = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; remote sensing, soil spectroscopy, wildfires, soil organic matter&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment: &lt;/strong&gt;This work was supported by the Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO). Aleksandra Per&amp;#269;in is acknowledged for her cooperation during the laboratory work.&lt;/p&gt;


2021 ◽  
Author(s):  
Hannah Binner ◽  
Timothy Sullivan ◽  
Maria E. Mc Namara

&lt;p&gt;Soil contamination is widespread across Europe. In particular, contamination of urban soils by metals is poorly characterised. This is a major environmental concern, especially given that urban recreational amenities may be located on former industrial sites and/or may possess ex situ soils derived from industrial areas. We surveyed soils from nine urban recreational sites (15 samples per site) in Cork city in order to assess the degree of metal contamination. The results show that Pb concentrations exceed national background levels in all soil samples from all sites by a mean of 600 % and at least 140 %. Mn, Fe and Zn are enriched above background levels in all soil samples from three (Mn and Fe) to five (Zn) of the sites and, at the remaining sites, show 7 &amp;#8211; 14 localised hotspots. Similar hotspots characterise Cu, Rb and Sr, which each exceed background levels at eight or more sampling locations at four sites. Co, Ni, As and Sn concentrations exceed background levels in at least three hotspots at each of three to six sites. Overall, metal concentrations are highest in the sites closest to the city centre, reflecting diverse sources that potentially include traffic and current and historical domestic coal burning and industry. At each urban site, the element grouping Zn and Pb recurs in 50 to 80 % of locations and enrichment in the element grouping Mn, Fe, Cu, Zn and Pb recurs in approx. 50 % of locations; Ni and As recur in approx. 10 % of the locations. At three sites, elevated concentrations of Mn, Fe, Cu, Zn and Pb are associated with high LOI (Loss-on-ignition) values &amp;#8211; a proxy for the amount of soil organic matter present &amp;#8211; and near-neutral pH values. Conversely, low LOI and acidic pH values are associated with lower concentrations of these elements. This indicates that soil metal concentrations are influenced by the amount of organic matter present and by pH. &amp;#160;Future analyses and experiments will further investigate links between soil organic matter and metal concentrations.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document