scholarly journals Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe

2019 ◽  
Vol 16 (21) ◽  
pp. 4293-4306 ◽  
Author(s):  
Heyong Liu ◽  
Ruzhen Wang ◽  
Hongyi Wang ◽  
Yanzhuo Cao ◽  
Feike A. Dijkstra ◽  
...  

Abstract. Here we investigated the effects of P compounds (KH2PO4 and Ca(H2PO4)2) with different addition rates of 0, 20, 40, 60, 80, and 100 kg P ha−1 yr−1 and NH4NO3 addition (0 and 100 kg N ha−1 yr−1) on soil labile inorganic phosphorus (IP) (dicalcium phosphate, Ca2-P), moderate-cycling IP, and recalcitrant IP fractions in a calcareous grassland of northeastern China. Soil moderate-cycling IP fractions, not readily available to plants but transforming into soil-available P quickly, include variscite (Al-P), strengite (Fe-P) and octacalcium phosphate (Ca8-P); recalcitrant IP fractions include hydroxylapatite (Ca10-P) and occluded P (O-P). Soil labile and moderate-cycling IP fractions and total P significantly increased with increasing P addition rates, with higher concentrations detected for KH2PO4 than for Ca(H2PO4)2 addition. Combined N and P treatments showed lower soil labile IP and moderate-cycling IP fractions compared to ambient N conditions, due to enhanced plant productivity. Moderate-cycling IP was mainly regulated by P addition and plant P uptake to further enhance labile IP and total P concentrations with KH2PO4 and Ca(H2PO4)2 addition. Soil labile IP was also directly and negatively affected by soil pH and plant P uptake with Ca(H2PO4)2 addition. Ca(H2PO4)2 addition significantly increased the soil recalcitrant IP (Ca10-P) fraction, while KH2PO4 addition showed no impact on it. A significant positive correlation was detected between soil labile IP, moderate-cycling IP fractions and soil Olsen-P which illustrated that labile IP and moderate-cycling IP fractions were important sources for soil-available P. Our results suggest that moderate-cycling IP fractions are essential for grassland P biogeochemical cycling and the chemical form of P fertilizer should be considered during fertilization management for maintaining soil-available P.

2019 ◽  
Author(s):  
Heyong Liu ◽  
Ruzhen Wang ◽  
Hongyi Wang ◽  
Yanzhuo Cao ◽  
Feike A. Dijkstra ◽  
...  

Abstract. Here we investigated the effects of P compounds (KH2PO4 and Ca(H2PO4)2) with different addition rates of 0, 20, 40, 60, 80 and 100 kg P ha−1 yr−1 and NH4NO3 addition (0 and 100 kg N ha−1 yr−1) on soil labile (Olsen-P), moderate-cycling and recalcitrant inorganic phosphorus (IP) fractions in a calcareous grassland of northeastern China. Soil moderate-cycling IP, not readily available to plants but transforming into available P quickly, include variscite (Al-P), strengite (Fe-P), dicalcium phosphate (Ca2-P) and octacalcium phosphate (Ca8-P); recalcitrant fractions include hydroxylapatite (Ca10-P) and occluded P (O-P). Soil labile and moderate-cycling IP fractions and total P significantly increased with increasing P addition rates, with higher concentrations detected for KH2PO4 than for Ca(H2PO4)2 addition. Combined N and P treatments showed lower moderate-cycling IP fractions compared to ambient N conditions due to enhanced plant productivity. Moderate-cycling IP was mainly regulated by aboveground plant biomass with KH2PO4 addition, while by soil pH and plant biomass with addition of Ca(H2PO4)2. Ca(H2PO4)2 addition significantly increased the soil recalcitrant IP (Ca10-P) fraction, while KH2PO4 addition showed no impact on it. A significant positive correlation was detected between soil moderate-cycling IP fractions and soil Olsen-P which illustrated that moderate-cycling IP fractions were important sources for available P. Our results suggest that moderate-cycling IP fractions are essential for grassland P biogeochemical cycling and chemical form of P fertilizer should be considered during fertilization management for maintaining soil available P.


2008 ◽  
Vol 43 (7) ◽  
pp. 893-901 ◽  
Author(s):  
Sidney Netto Parentoni ◽  
Claudio Lopes de Souza Júnior

The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.


Author(s):  
Fitsum Tesfaye ◽  
Xiaoyu Liu ◽  
Jufeng Zheng ◽  
Kun Cheng ◽  
Rongjun Bian ◽  
...  

AbstractAs one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha−1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.


1985 ◽  
Vol 65 (1) ◽  
pp. 47-60 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to evaluate different available P extracting methods in relation with soil properties, oat yield and plant P uptake. Six chemical extractants (Bray-1, Bray-2, new Mehlich, North Carolina DA-4, DA-10, and Olsen) and two anion exchange resins (F− and HCO3−) were compared on 42 acid soils. The DA-4, DA-10, new Mehlich, and HCO3− resin methods showed the best correlation with oat yield and plant P uptake. The Bray-1, Bray-2 methods were significantly less correlated than the other methods. The HCO3− resin was better than F− resin to predict plant P uptake and yield. Available P levels as determined by these eight methods were classified poor, medium and rich by the Cate and Nelson procedure. Oxalate extractable Al, pH (NaF), pH (H2O), exchangeable (Ca + Mg), forms of P, maximum P fixation capacity and soil texture have great influence on the plant P uptake. Soil organic matter content and oxalate-extractable Fe had significantly less important an effect. The Bray-1 and Bray-2 methods were the most affected by soil properties especially oxalate-extractable Al. The P-HCl/P-DAF ratio proposed by Mehlich to identify forms of soil P indicated that seven soils contain predominantly Ca-P and 21 soils with predominantly Al-P and Fe-P. This ratio was related with oxalate extractable Al (r = − 0.32*), pH NaF (r = − 0.59**), pH H2O (r = 0.52**) and exchangeable Ca + Mg (r = 0.55**). The maximum P fixation capacity (M) ranged from 150 to 4200 μg P/g soil and was closely related with oxalate-extractable Al (r = 0.81**), pH NaF (r = 0.74**), pH H2O (r = − 0.36*) and Mehlich ratio (r = − 0.33*). The maximum P buffering capacity (Mb) of soils was also measured and showed the best correlation with oxalate-extractable Al (r = 0.84**) and pH NaF (r = 0.53**). Key words: Soil testing, available P, anion exchange resins, P fixation, oxalate-Al, forms of P


2017 ◽  
Vol 14 (3) ◽  
Author(s):  
Any Kusumastuti

The experiment was conducted at field experiment of Lampung State Polytechnic from June up to November 2012, using complete randomized block design with factorial pattern, which consists of two factors, and three replications. The first factor is organic matter (POME) dosage, consists of three dosages (without POME, 25% POME with 75% soil, and 50% POME with 50% soil). The second factor is dosage of SP-36 Fertilizer (without SP-36, 1.8 g, 3.6 g, and 5.4 g SP-36 per polybag (plant) respectively. The study aims was to determine (1) The dynamics of soil available P, (2) The effect of the best POME dosage for pH, C-organic and P uptake, (3) The effect of the best SP-36 dosage for pH, C-organic and P uptake, (4) The interaction between dosages of POME and SP-36 on pH, C-organic and P uptake of plant. The observation consists of (a) Soil available P, (b) pH and C-organic (c) and P uptake of plant. The data was analysis with variance analysis, furthermore, if the result is significance, was continued with LSD test, but soil available P dynamics was presented in graphic form. The result showed that (a) Applications of POME and SP-36 increase the soil available P, (b) The media with 25% POME and 50% POME were gave the better result on pH, C-organic and P uptake by plant, (c) SP-36 fertilizer fertilizer at various doses has not been any impact on soil pH, organic-C and P uptake of plants (d) There is no interaction between POME and SP-36 fertilizer on soil pH, organic C and P uptake of plants Keywords : P Dynamics, P Uptake of Patchouli, Pogostemon cablin, ultisols


2013 ◽  
Vol 373 (1-2) ◽  
pp. 711-722 ◽  
Author(s):  
Sean D. Mason ◽  
Mike J. McLaughlin ◽  
Caroline Johnston ◽  
Ann McNeill

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12611
Author(s):  
YaLan Liu ◽  
Bo Liu ◽  
Zewei Yue ◽  
Fanjiang Zeng ◽  
Xiangyi Li ◽  
...  

The effects of increasing nitrogen (N) and phosphorus (P) deposition on the nutrient stoichiometry of soil and plant are gaining improving recognition. However, whether and how the responses of N cycle coupled with P of the soil–plant system to external N and P deposition in alpine grassland is still unclear. A short-term external N and P addition experiment was conducted in an alpine grazing grassland in the KunLun Mountain to explore the effects of short-term N and P addition on the nutrient stoichiometry in soil and plant. Different rates of N addition (ranging from 0.5 g N m−2 yr−1 to 24 g N m−2 yr−1) and P addition (ranging from 0.05 g N m−2 yr−1 to 3.2 g P m−2 yr−1) were supplied, and the soil available N, P, leaf N and P stoichiometry of Seriphidium rhodanthum which dominant in the alpine ecosystem were measured. Results showed that N addition increased soil inorganic N, leaf C, leaf N, and leaf N:P ratio but decreased soil available P and leaf C:P. Furthermore, P addition increased soil available P, leaf P, soil inorganic N, leaf N, and leaf C and reduced leaf C:N, C:P, and N:P ratios. Leaf N:P was positively related to N addition gradient. Leaf C:P and leaf N:P were significantly negatively related to P addition gradient. Although external N and P addition changed the value of leaf N:P, the ratio was always lower than 16 in all treatments. The influences of P addition on soil and plant mainly caused the increase in soil available P concentration. In addition, the N and P cycles in the soil–plant system were tightly coupled in P addition but decoupled in N addition condition. The nutrient stoichiometry of soil and leaf responded differently to continuous N and P addition gradients. These data suggested that the alpine grazing grassland was limited by P rather than N due to long-term N deposition and uniform fertilization. Moreover, increasing P addition alleviated P limitation. Therefore, the imbalanced N and P input could change the strategy of nutrient use of the grass and then change the rates of nutrient cycling in the alpine grassland ecosystem in the future.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9062
Author(s):  
Yongbin Li ◽  
Qin Li ◽  
Guohua Guan ◽  
Sanfeng Chen

Phosphate (P) availability often limits biological nitrogen fixation (BNF) by diazotrophic bacteria. In soil, only 0.1% of the total P is available for plant uptake. P solubilizing bacteria can convert insoluble P to plant-available soluble P (ionic P and low molecular-weight organic P). However, limited information is available about the effects of synergistic application of diazotrophic bacteria and P solubilizing bacteria on the nitrogenase activity of rhizosphere and nifH expression of endosphere. In this study, we investigated the effects of co-inoculation with a diazotrophic bacterium (Paenibacillus beijingensis BJ-18) and a P-solubilizing bacterium (Paenibacillus sp. B1) on wheat growth, plant and soil total N, plant total P, soil available P, soil nitrogenase activity and the relative expression of nifH in plant tissues. Co-inoculation significantly increased plant biomass (length, fresh and dry weight) and plant N content (root: 27%, shoot: 30%) and P content (root: 63%, shoot: 30%). Co-inoculation also significantly increased soil total N (12%), available P (9%) and nitrogenase activity (69%) compared to P. beijingensis BJ-18 inoculation alone. Quantitative real-time PCR analysis showed co-inoculation doubled expression of nifH genes in shoots and roots. Soil nitrogenase activity and nifH expression within plant tissues correlated with P content of soil and plant tissues, which suggests solubilization of P by Paenibacillus sp. B1 increased N fixation in soils and the endosphere. In conclusion, P solubilizing bacteria generally improved soil available P and plant P uptake, and considerably stimulated BNF in the rhizosphere and endosphere of wheat seedlings.


2020 ◽  
Vol 8 (1) ◽  
pp. 189-202
Author(s):  
F Fahrunsyah ◽  
M Mulyadi ◽  
Agus Sarjono ◽  
Surya Darma

Ultisol is one type of soil that has a very wide distribution in Indonesia, but the use of this soil faces many obstacles. The main problem in ultisol utilization is the low availability of phosphorus (P) and the low absorption efficiency. Coal fly ash (CFA) is a material that can overcome these problems. The objective of this study was to examine the effect of Application CFA on several soil chemical properties (pH, exchangeable Al, exchangeable Ca and available P), plant growth, yield, and absorption efficiency of P fertilizer. This study used a completely randomized factorial design consisting of two factors. The first factor was CFA that consisted of three levels of treatment, namely: A0 = 0 t ha-1 or without CFA, A1 = 40 t CFA ha-1, A2 = 80 t CFA ha-1. The second factor was P fertilizer that consisted of four levels of treatment, namely: P0 = 0 kg ha-1, P1 = 30 kg P ha-1, P2 = 60 kg P ha-1 and P3 = 90 kg P ha-1. The results of the study showed that the application of 80 t CFA ha-1 increased the pH by 13.41%, reduced exchangeable Al by 59.53% and increased exchangeable by Ca 192.66% compared to control. The combination 80 t CFA ha-1 and 90 kg P ha-1 increased available P by 986.79% compared to control. The application of 80 t CFA ha-1 resulted in the highest total plant dry weight and total P uptake. The treatment resulted in total plant dry weight of 172.96 g and total P uptake of 187.62 mg plant-1, increased 62.39% and 100.21% respectively compared to the control. The application of 90 kg P fertilizer ha-1 resulted in the highest total dry weight of maize, and total P uptake, namely 167.49 g and 174.39 mg plant-1, respectively, which means that the total plant dry weight increased by 51.00% and the total uptake P increased 69.79% compared to control. The highest seed dry weight was obtained in the combination of 80 t CFA ha-1 and 90 kg P ha-1, namely 39.33 g, an increase of 715.53% compared to the control. The combination of 40 t CFA ha-1 and 30 kg P ha-1 resulted in the highest absorption efficiency of P fertilizer, namely 30.43%. This means that in this treatment, maize can absorb 30.43% of the applied P fertilizer.


Sign in / Sign up

Export Citation Format

Share Document