scholarly journals Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments

Author(s):  
Fitsum Tesfaye ◽  
Xiaoyu Liu ◽  
Jufeng Zheng ◽  
Kun Cheng ◽  
Rongjun Bian ◽  
...  

AbstractAs one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha−1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.

2008 ◽  
Vol 43 (7) ◽  
pp. 893-901 ◽  
Author(s):  
Sidney Netto Parentoni ◽  
Claudio Lopes de Souza Júnior

The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.


2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


2013 ◽  
Vol 16 (2) ◽  
pp. 107-114
Author(s):  
. Marsi ◽  
. Sabaruddin

Ultisols and Inceptisols were used to investigate the adsorption-desorption capacity of P and the effect of organic matter on the dynamics of P availability in tropical acid soils. The experiment consisted of two sub-experiments. Sub-experiment I was to study the adsorption-desorption capacity of Ultisols, Fresh-water lowland Inceptisols, and tidal-swamp Inceptisols. Therefore, surface soils (0 to 30 cm) of each tested soil were treated with 0, 10, 20, 30, 40, 60, 80, 100, 120, 140, 170, and 200 mg P kg-1 of soil. Sub-experiment II was to study the effects of organic matterapplication (0, 5, 10, and 15 Mg ha-1) on the dynamics of available P following 60d incubation under room temperature.P fertilizer application significantly affected water soluble-P (WSP) (p<0.01) and soil available P-Bray and Kurtz No. 1 (BKP) (p<0.01) in the three tested soils. The different response of both WSP and BKP confirmed that the soils tested in the current experiment had different soil P buffering capacity in the order of Tidal-lowlandInceptisol>Upland Ultisol>fresh-water Lowland Inceptisol. OM application increased the BKP in all tested soils as compared to the control. Differences in pattern of soil available P dynamics over time were detected between upland soil and two lowland soils used in the current experiment.Keywords: Adsorption-desorption, Inceptisols, organic matter, Ultisols


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 795E-796
Author(s):  
P.R. Johnstone ◽  
T.K. Hartz*

Heavy P fertilization of vegetable crops in the Salinas Valley of California have increased soil P levels, with > 50 mg·kg-1 bicarbonate-extractable P (Pbc) now common. To evaluate the response of lettuce (Lactuca sativa L.) to P fertilization in fields with elevated soil P levels, 12 trials were conducted in commercial fields during 2002-2003. Pbc at the trial sites varied from 53-171 mg·kg-1. In each trial four replicate plots receiving the growers' P application were compared with paired plots in which no P was applied. Leaf P was monitored at cupping stage and at harvest. At harvest mean whole plant mass and % of marketable plants were recorded. The correlation of Pbc to bioavailable P (Pba) was evaluated using 30 representative Salinas Valley soils; Pbc varied among these soils from 15-177 mg·kg-1. Pba was estimated by P adsorption on an anion resin membrane during a 16 h incubation. The effect of temperature on P bioavailability in 6 of these soils was estimated by conducting the Pba incubation at 5, 15 and 25 °C. A significant increase in lettuce yield with P fertilization was achieved at only one trial site, a spring planting where Pbc was 54 mg kg-1 ; at all other sites, including 3 with Pbc < 60 mg kg-1, P application resulted in no agronomic benefit. P application resulted in only a marginal increase in plant P uptake. Pba was highly correlated with Pbc (r = 0.89). Pba increased approximately 40% across soils with each 10 °C increase in soil temperature.


2018 ◽  
Vol 64 (No. 9) ◽  
pp. 441-447 ◽  
Author(s):  
Jarosch Klaus A ◽  
Santner Jakob ◽  
Parvage Mohammed Masud ◽  
Gerzabek Martin Hubert ◽  
Zehetner Franz ◽  
...  

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H<sub>2</sub>O (water extractable P); (2) P-H<sub>2</sub>O<sub>C10</sub> (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-C<sub>DGT</sub> (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H<sub>2</sub>O<sub>C10</sub> &gt; P-C<sub>DGT</sub> &gt; P-H<sub>2</sub>O &gt; P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.


Soil Research ◽  
2019 ◽  
Vol 57 (5) ◽  
pp. 447
Author(s):  
Maximilian Koch ◽  
Christopher Guppy ◽  
Wulf Amelung ◽  
Stella Gypser ◽  
Roland Bol ◽  
...  

There is currently relatively little available information on subsoil phosphorus (P) use for crop production as a function of soil order. In this study, a rhizobox experiment was performed using subsoils of two reference soil groups, an Orthic Ferralsol and a Haplic Luvisol. To evaluate the immediate P uptake by wheat (Triticum aestivum L.) from different subsoil P pools during 14 days of growth, subsoil bands were spiked with KH2PO4 solution associated to Fe-hydroxide (33P-Fe), to Al-hydroxide (33P-Al), in free form (33P-OrthoP), or in trace amounts without any additional 31P (33P-NoP). At the beginning of the experiment, the soil water content was set at 75% of water-holding capacity, corresponding to an initial soil matric potential of −12 ± 1 kPa. During plant growth, soil moisture decreased in both soils, but soil matric potentials in both soils did not drop below field capacity (−33 kPa; pF 2.5). The shoot dry weights of the Ferralsol were 1.2 to 1.8 times those of the Luvisol. Despite elevated soil P availability in the Luvisol, shoot P concentrations did not differ between the two soils. The amount of 33P taken up by the shoots from the oxide phases was 15% to 40% greater in the Ferralsol treatments than in those in the Luvisol treatments. It was concluded that the more favourable physical soil conditions facilitated 33P uptake from both oxidic phases from the Ferralsol subsoil relative to the Luvisol subsoil, despite better P phytoavailability in the latter.


2019 ◽  
Vol 16 (21) ◽  
pp. 4293-4306 ◽  
Author(s):  
Heyong Liu ◽  
Ruzhen Wang ◽  
Hongyi Wang ◽  
Yanzhuo Cao ◽  
Feike A. Dijkstra ◽  
...  

Abstract. Here we investigated the effects of P compounds (KH2PO4 and Ca(H2PO4)2) with different addition rates of 0, 20, 40, 60, 80, and 100 kg P ha−1 yr−1 and NH4NO3 addition (0 and 100 kg N ha−1 yr−1) on soil labile inorganic phosphorus (IP) (dicalcium phosphate, Ca2-P), moderate-cycling IP, and recalcitrant IP fractions in a calcareous grassland of northeastern China. Soil moderate-cycling IP fractions, not readily available to plants but transforming into soil-available P quickly, include variscite (Al-P), strengite (Fe-P) and octacalcium phosphate (Ca8-P); recalcitrant IP fractions include hydroxylapatite (Ca10-P) and occluded P (O-P). Soil labile and moderate-cycling IP fractions and total P significantly increased with increasing P addition rates, with higher concentrations detected for KH2PO4 than for Ca(H2PO4)2 addition. Combined N and P treatments showed lower soil labile IP and moderate-cycling IP fractions compared to ambient N conditions, due to enhanced plant productivity. Moderate-cycling IP was mainly regulated by P addition and plant P uptake to further enhance labile IP and total P concentrations with KH2PO4 and Ca(H2PO4)2 addition. Soil labile IP was also directly and negatively affected by soil pH and plant P uptake with Ca(H2PO4)2 addition. Ca(H2PO4)2 addition significantly increased the soil recalcitrant IP (Ca10-P) fraction, while KH2PO4 addition showed no impact on it. A significant positive correlation was detected between soil labile IP, moderate-cycling IP fractions and soil Olsen-P which illustrated that labile IP and moderate-cycling IP fractions were important sources for soil-available P. Our results suggest that moderate-cycling IP fractions are essential for grassland P biogeochemical cycling and the chemical form of P fertilizer should be considered during fertilization management for maintaining soil-available P.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1818
Author(s):  
Mohsin Mahmood ◽  
Yi Tian ◽  
Qingxia Ma ◽  
Waqas Ahmed ◽  
Sajid Mehmood ◽  
...  

Excessive phosphorus (P) application can alter soil P availability and limit plant growth by compacting soil and fixation of P into different organic and inorganic forms. However, it remains uncertain whether these changes happen after limited fertilization or an excessive rate applied under the winter wheat cropping system. The current study aimed to identify the transformation of P into different organic (Po) and inorganic (Pi) fractions, and their role in the plant P uptake and winter wheat (Triticum aestivum L.) production. A long-term study (12 years) was conducted to assess the changes in soil Pi and Po fractions in response to different P rates (0, 50, 100, 150, and 200 kg P2O5 ha−1) applied to winter wheat. Phosphorus fractions were determined using the Hedley modified Tiessen and Moir fractionation scheme. Our findings demonstrated that different P rates significantly increased the available P, particularly NaHCO3-Pi, in the inorganic P fractions compared to P0 treatment. NaHCO3-Pi showed a strong relationship with grain yield (R2 = 0.91) and P uptake (R2 = 0.80). Grain yield was significantly higher in the P100 treatment, but no significant difference was observed between P100 and P200 treatments. The P200 treatment had a maximum grain P content and plant P uptake. Compared with the P0 treatment, all organic fractions yielded the highest Po with the P rate increase, ranging from 27.3 to 75.6 mg kg−1, 27.2 to 35.6 mg kg−1, and 58.8 to 124 mg kg−1 for NaHCO3-Po, NaOH-Po, and HCl-Po, respectively. Among all Pi fractions, the maximum fraction, known as apatite (HClD-Pi), was found in the P200 treatment with the range of 165 to 245.9 mg kg−1. HClD-Pi accounted for 32% of total P, which can be transformed into the available P form with the passage of time. An increase of 78% in residual P was found under the treatment of P200. The residual P fraction was positively correlated with grain yield, P uptake, and other inorganic fractions. It can be concluded that application of P increases P availability and grain yield with an increase in its application rate, but too much use of P can cause soil pollution and higher fixation of P. Consequently, a balanced application of fertilizer is recommended to reduce its fixation and increase its availability for higher crop yield.


Sign in / Sign up

Export Citation Format

Share Document