scholarly journals Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9062
Author(s):  
Yongbin Li ◽  
Qin Li ◽  
Guohua Guan ◽  
Sanfeng Chen

Phosphate (P) availability often limits biological nitrogen fixation (BNF) by diazotrophic bacteria. In soil, only 0.1% of the total P is available for plant uptake. P solubilizing bacteria can convert insoluble P to plant-available soluble P (ionic P and low molecular-weight organic P). However, limited information is available about the effects of synergistic application of diazotrophic bacteria and P solubilizing bacteria on the nitrogenase activity of rhizosphere and nifH expression of endosphere. In this study, we investigated the effects of co-inoculation with a diazotrophic bacterium (Paenibacillus beijingensis BJ-18) and a P-solubilizing bacterium (Paenibacillus sp. B1) on wheat growth, plant and soil total N, plant total P, soil available P, soil nitrogenase activity and the relative expression of nifH in plant tissues. Co-inoculation significantly increased plant biomass (length, fresh and dry weight) and plant N content (root: 27%, shoot: 30%) and P content (root: 63%, shoot: 30%). Co-inoculation also significantly increased soil total N (12%), available P (9%) and nitrogenase activity (69%) compared to P. beijingensis BJ-18 inoculation alone. Quantitative real-time PCR analysis showed co-inoculation doubled expression of nifH genes in shoots and roots. Soil nitrogenase activity and nifH expression within plant tissues correlated with P content of soil and plant tissues, which suggests solubilization of P by Paenibacillus sp. B1 increased N fixation in soils and the endosphere. In conclusion, P solubilizing bacteria generally improved soil available P and plant P uptake, and considerably stimulated BNF in the rhizosphere and endosphere of wheat seedlings.


2021 ◽  
Vol 13 (8) ◽  
pp. 1519
Author(s):  
Kensuke Kawamura ◽  
Tomohiro Nishigaki ◽  
Andry Andriamananjara ◽  
Hobimiarantsoa Rakotonindrina ◽  
Yasuhiro Tsujimoto ◽  
...  

As a proximal soil sensing technique, laboratory visible and near-infrared (Vis-NIR) spectroscopy is a promising tool for the quantitative estimation of soil properties. However, there remain challenges for predicting soil phosphorus (P) content and availability, which requires a reliable model applicable for different land-use systems to upscale. Recently, a one-dimensional convolutional neural network (1D-CNN) corresponding to the spectral information of soil was developed to considerably improve the accuracy of soil property predictions. The present study investigated the predictive ability of a 1D-CNN model to estimate soil available P (oxalate-extractable P; Pox) content in soils by comparing it with partial least squares (PLS) and random forest (RF) regressions using soil samples (n = 318) collected from natural (forest and non-forest) and cultivated (upland and flooded rice fields) systems in Madagascar. Overall, the 1D-CNN model showed the best predictive accuracy (R2 = 0.878) with a highly accurate prediction ability (ratio of performance to the interquartile range = 2.492). Compared to the PLS model, the RF and 1D-CNN models indicated 4.37% and 23.77% relative improvement in root mean squared error values, respectively. Based on a sensitivity analysis, the important wavebands for predicting soil Pox were associated with iron (Fe) oxide, organic matter (OM), and water absorption, which were previously known wavelength regions for estimating P in soil. These results suggest that 1D-CNN corresponding spectral signatures can be expected to significantly improve the predictive ability for estimating soil available P (Pox) from Vis-NIR spectral data. Rapid and accurate estimation of available P content in soils using our results can be expected to contribute to effective fertilizer management in agriculture and the sustainable management of ecosystems. However, the 1D-CNN model will require a large dataset to extend its applicability to other regions of Madagascar. Thus, further updates should be tested in future studies using larger datasets from a wide range of ecosystems in the tropics.



2017 ◽  
Vol 52 (5) ◽  
pp. 319-327 ◽  
Author(s):  
Rogério Piccin ◽  
Rafael da Rosa Couto ◽  
Roque Júnior Sartori Bellinaso ◽  
Luciano Colpo Gatiboni ◽  
Lessandro De Conti ◽  
...  

Abstract: The objective of this work was to evaluate phosphorus forms in grape leaves and their relationships with must composition and yield in grapevines grown in a Typic Hapludalf with different available P contents. Two experiments were carried out with Vitis viniferacultivars, one with 'Tannat' and the other with 'Cabernet Franc' grapes. Experiment 1 consisted of two vineyards of 'Tannat', with the following P content in the soil: V1, 11.8 mg kg-1 P; and V2, 34.6 mg kg-1 P. Experiment 2 consisted of two vineyards of 'Cabernet Franc', with the following P content in the soil: V1, 16.0 mg kg-1 P; and V2, 37.0 mg kg-1 P. Leaves were collected at flowering (FL) and veraison (V), and, after their preparation, P forms were evaluated. Yield and must composition were assessed. The highest yield was observed in V2 of experiment 1 and in V2 of experiment 2. Total P content and P forms in leaves at FL and V have no relationship with yield parameters; however, total P content in leaves has a relationship with anthocyanin content in the must of 'Tannat' grapevines. Therefore, P fractionation in leaves predicts neither grapevine yield nor must composition.



2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Isamu Maeda

Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.



Author(s):  
Khadraji Ahmed ◽  
Bouhadi Mohamed ◽  
Ghoulam Cherk

Background: Growing chickpea (Cicer arietinum) plants is affected by several environmental constraints as osmotic stress and nutrients deficiency particularly phosphorus (P). For other legume species, it was confirmed that P deficiency affects negatively their rhizobial symbiosis. The purpose of this study was to assess the effect of soil available P level on chickpea-rhizobia symbiosis under field conditions at Oualidia region of Morocco. Methods: Ten farmers’ fields with different soil available P levels were considered to carry out this study based on samples of 10 plants per plot. Result: The results showed that the plants from soil 7, with the lowest pH and the highest available P level (23.52ppm), presented high shoot dry weight (38.3 g/plant). Meanwhile the soil 5 with the lowest available P content showed low plant growth. The shoot P content was positively linked to soil P level but nodule biomass showed an irregular variation with soil available P level. Furthermore, it was confirmed that adequate plant P nutrition results in high chickpea yield and it was the case for plants from soil 7 presenting a mean yield of 62 seeds per plant). Finally, strong correlation was noted between yield and phosphorus concentration in soil (r=0.94).



1994 ◽  
Vol 21 (1) ◽  
pp. 55-60 ◽  
Author(s):  
H. T. Stalker ◽  
M. L. Nickum ◽  
J. C. Wynne ◽  
G. H. Elkan ◽  
T. J. Schneeweis

Abstract Arachis species have potential for enhancing cultivated peanut (Arachis hypogaea L.) germplasm as forages and cover crops. This study's objective was to evaluate a range of Arachis species for biological nitrogen fixation capacity. Several Arachis species are tetraploids, and it has been shown that tetraploidy may play an important role in nodule initiation. Species were first tested under natural field conditions and then in the greenhouse using three Bradyrhizobium strains that had been previously shown to be effective on peanut. Nodule number, nodule weight, nitrogenase activity determined by acetylene reduction, and shoot dry weight were measured as indicators of nitrogen fixation capacity. In the field, tetraploid species produced significantly more nodules than the diploids, but total dry matter accumulation was independent of the number of nodules or rate of fixation. In the greenhouse, no significant differences were observed among the bradyrhizobial strains. Arachis hypogaea and A. monticola showed significantly higher measures of nitrogen fixation capacity for all measured traits than the diploid species. However, autotetraploid plants of A. villosa did not have significantly more nodules than diploids of the same accession; the autotetraploids consistently had higher nitrogenase activity. Arachis pusilla never formed a symbiotic relationship with the bradyrhizobial strains used.



2019 ◽  
Vol 2 (2) ◽  
pp. 179-187
Author(s):  
Ereminas Nirigi ◽  
Sucahyo Sucahyo ◽  
Jacob La Oktulseja

This study aims to determine the effect of Petro Gladiator® probiotic on the growth of earthworms (Lumbricus rubellus), in terms of the length and weight of earthworms to determine the compost produced from probiotics and earthworms (Lumbricus rubellus). This study used a Completely Randomized Design (CRD) with 3 treatments and 4 replications. The sample of this study is 3 kilograms of earthworms with hand sorting. The results showed that administration of Petro Gladiator® Probiotic has a significant effect (α <0.05) on the increase in total body length of earthworms, while from the weight gain of compost in treatment of different Petro Gladiator® probiotic, there was no significant difference with the Tuket test (α = 0.05). The administration of probiotics significantly (α <0.05) increased the percentage of total N and P content, and decreased total K content. The addition of Petro Gladiator® probiotics has an effect on the length and weight of earthworms. The addition of Petro Gladiator® probiotics also improves the quality of compost, N-total, P-total, organic matter and decreases the C / N ratio. Keywords : Earthworm, compost, cow dung medium, probiotics.



2016 ◽  
Vol 49 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Wansik Shin ◽  
Rashedul Islam ◽  
Abitha Benson ◽  
Manoharan Melvin Joe ◽  
Kiyoon Kim ◽  
...  




2015 ◽  
Vol 39 (3) ◽  
pp. 774-787 ◽  
Author(s):  
Lessandro De Conti ◽  
Carlos Alberto Ceretta ◽  
Paulo Ademar Avelar Ferreira ◽  
Felipe Lorensini ◽  
Cledimar Rogério Lourenzi ◽  
...  

The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P) content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM), Santa Maria (RS). The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf), subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC), and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.



Sign in / Sign up

Export Citation Format

Share Document