scholarly journals Dissolved organic carbon mobilized from organic horizons of mature and harvested black spruce plots in a mesic boreal region

2020 ◽  
Vol 17 (3) ◽  
pp. 581-595
Author(s):  
Keri L. Bowering ◽  
Kate A. Edwards ◽  
Karen Prestegaard ◽  
Xinbiao Zhu ◽  
Susan E. Ziegler

Abstract. Boreal forests are subject to a wide range of temporally and spatially variable environmental conditions driven by season, climate, and disturbances such as forest harvesting and climate change. We captured dissolved organic carbon (DOC) from surface organic (O) horizons in a boreal forest hillslope using passive pan lysimeters in order to identify controls and hot moments of DOC mobilization from this key C source. We specifically addressed (1) how DOC fluxes from O horizons vary on a weekly to seasonal basis in forest and paired harvested plots and (2) how soil temperature, soil moisture, and water input relate to DOC flux trends in these plots over time. The total annual DOC flux from O horizons contain contributions from both vertical and lateral flow and was 30 % greater in the harvested plots than in the forest plots (54 g C m−2 vs. 38 g C m−2, respectively; p=0.008). This was despite smaller aboveground C inputs and smaller soil organic carbon stocks in the harvested plots but analogous to larger annual O horizon water fluxes measured in the harvested plots. Water input, measured as rain, throughfall, and/or snowmelt depending on season and plot type, was positively correlated to variations in O horizon water fluxes and DOC fluxes within the study year. Soil temperature was positively correlated to temporal variations of DOC concentration ([DOC]) of soil water and negatively correlated with water fluxes, but no relationship existed between soil temperature and DOC fluxes at the weekly to monthly scale. The relationship between water input to soil and DOC fluxes was seasonally dependent in both plot types. In summer, a water limitation on DOC flux existed where weekly periods of no flux alternated with periods of large fluxes at high DOC concentrations. This suggests that DOC fluxes were water-limited and that increased water fluxes over this period result in proportional increases in DOC fluxes. In contrast, a flushing of DOC from O horizons (observed as decreasing DOC concentrations) occurred during increasing water input and decreasing soil temperature in autumn, prior to snowpack development. Soils of both plot types remained snow-covered all winter, which protected soils from frost and limited percolation. The largest water input and soil water fluxes occurred during spring snowmelt but did not result in the largest fluxes of DOC, suggesting a production limitation on DOC fluxes over both the wet autumn and snowmelt periods. While future increases in annual precipitation could lead to increased DOC fluxes, the magnitude of this response will be dependent on the type and intra-annual distribution of this increased precipitation.

2019 ◽  
Author(s):  
Keri Bowering ◽  
Kate A. Edwards ◽  
Xinbiao Zhu ◽  
Susan E. Ziegler

Abstract. Boreal forests are subject to a wide range of temporally and spatially variable environmental conditions driven by seasonal and regional climate variations, in addition to disturbances such as forest harvesting and climate change. Among the various ecological mechanisms affected by disturbance, is the transport rate of dissolved organic carbon (DOC) from surface soil organic (O) horizons to deeper mineral SOC pools and the adjacent aquatic systems. Here, we examine the transport of DOC from surface O horizons across a boreal forest landscape using passive pan lysimeters in order to identify controls and hot moments of DOC mobilization from this key C source. To do so, we specifically addressed (1) how DOC fluxes from O horizons vary on a weekly to seasonal basis in both forest and harvested plots, and (2) how soil temperature, soil moisture and water inputs relate to DOC fluxes in these plots over time. The total annual DOC flux from O horizons was greater in the warmer harvested plots than in the forest plots (54 g C m−2 vs 38 g C m−2 respectively; p = 0.008), despite smaller aboveground C inputs and smaller SOC stocks in the harvested plots. Water input, measured as rain, throughfall and/or snowmelt depending on season, was positively correlated to temporal variations in soil water and DOC fluxes. Soil temperature was positively correlated to temporal variations of DOC concentration ([DOC]) of soil water and negatively correlated with water fluxes, but no relationship existed between soil temperature and DOC fluxes. Soil moisture was negatively correlated to temporal variations in [DOC] in the harvested plots only. The relationship between water input to soil and DOC fluxes was seasonally dependent in both plot types. In summer, a water limitation on DOC flux existed where weekly periods of no flux alternated with periods of large fluxes, suggesting that increased water fluxes over this period would result in proportional increases in DOC fluxes. In contrast, a flushing of O horizons occurred during increasing water inputs and decreasing soil temperatures in autumn, prior to snowpack development. Soils of both plot types remained snow-covered all winter, which protected soils from frost and limited winter soil water fluxes. The largest water input and soil water fluxes occurred during spring snowmelt, but did not result in the largest fluxes of DOC, suggesting a production limitation on DOC fluxes over both the wet autumn and snowmelt periods. While future increases in annual precipitation could lead to increased DOC fluxes, the response may be dependent on the intra-annual distribution of this increase. Increased water input during the already wet autumn, for instance, may not lead to increased fluxes if the DOC pool is not replenished. Potential reductions in snow cover, however, leading to a reduction in soil insulation and increased occurrence of soil frost in addition to increases in winter-time water fluxes, could be an important mechanism of increased DOC production and fluxes from O horizons in winter.


2016 ◽  
Author(s):  
W.-J. Zhou ◽  
H.-Z. Lu ◽  
L.-Q. Sha ◽  
Y.-P. Zhang ◽  
D. A. Schaefer ◽  
...  

Abstract. To better understand the role of the dissolved organic carbon (DOC) transported by hydrological processes in soil respiration in tropical rainforests, we measured: (1) the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0–20 cm), (2) the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and (3) soil respiration in a tropical rainforest in Xishuangbanna, southwest China. The results showed: the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 % and 7.23 % of the net ecosystem exchange, respectively, indicating that the DOC flux through hydrological processes is a key component of the carbon budget, and may be a key link between hydrological processes and soil respiration in the tropical rainforest. The difference in δ13C among the soil, soil water (at 0–20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil. The variability in soil respiration is more dependent on the hydrologically transported DOC flux than on the soil water content (at 0–20 cm), and is more sensitive to the soil water DOC flux (at 0–20 cm) than to the soil temperature, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil water DOC flux, than to soil temperature or soil moisture.


2016 ◽  
Vol 13 (19) ◽  
pp. 5487-5497 ◽  
Author(s):  
Wen-Jun Zhou ◽  
Hua-Zheng Lu ◽  
Yi-Ping Zhang ◽  
Li-Qing Sha ◽  
Douglas Allen Schaefer ◽  
...  

Abstract. To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0–20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0–20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0–20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0–20 cm). The difference in δ13C between the soil, soil water (at 0–20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Sarah Stanley

Climate change and forest harvesting will increase the concentration and flow of dissolved organic carbon in boreal streams.


2014 ◽  
Vol 7 (3) ◽  
pp. 867-881 ◽  
Author(s):  
H. Wu ◽  
C. Peng ◽  
T. R. Moore ◽  
D. Hua ◽  
C. Li ◽  
...  

Abstract. Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.


2016 ◽  
Vol 68 ◽  
pp. 36-51 ◽  
Author(s):  
K. Sawicka ◽  
D.T. Monteith ◽  
E.I. Vanguelova ◽  
A.J. Wade ◽  
J.M. Clark

2021 ◽  
Author(s):  
Katharina Blaurock ◽  
Phil Garthen ◽  
Benjamin S. Gilfedder ◽  
Jan H. Fleckenstein ◽  
Stefan Peiffer ◽  
...  

<p>Dissolved organic carbon (DOC) constitutes the biggest portion of carbon that is exported from soils. During the last decades, widespread increases in DOC concentrations of surface waters have been observed, affecting ecosystem functioning and drinking water treatment. However, the hydrological controls on DOC mobilization are still not completely understood.</p><p>We sampled two different topographical positions within a headwater catchment in the Bavarian Forest National Park: at a steep hillslope (880 m.a.s.l.) and in a flat and wide riparian zone (770 m.a.s.l.). By using piezometers, pore water samplers (peepers) and in-stream spectrometric devices we measured DOC concentrations as well as DOC absorbance (A<sub>254</sub>/A<sub>365</sub> and SUVA<sub>254</sub>) and fluorescence characteristics (fluorescence and freshness indices) in soil water, shallow ground water and stream water in order to gain insights into the DOC source areas during base-flow and during precipitation events.</p><p>High DOC concentrations (up to 80 mg L<sup>-1</sup>) were found in soil water from cascading sequences of small ponds in the flat downstream part of the catchment that fill up temporarily. The increase of in-stream DOC concentrations during events was accompanied by changing DOC characteristics at both locations, for example increasing freshness index values. As the freshness index values were approaching the values found in the DOC-rich ponds in the riparian zone, these ponds seem to be important DOC sources during events. Our preliminary results point to a change of flow pathways during events.</p>


Atmosphere ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Baoling Mei ◽  
Hongyu Yue ◽  
Xunhua Zheng ◽  
William McDowell ◽  
Qingshan Zhao ◽  
...  

The establishment of sown pasture is an important agricultural practice in many landscapes. Although both native grassland and sown pasture play a key role in the global carbon cycle, due to lack of data and field experiments, our understanding of grassland CH4 fluxes and CO2 emissions remains limited, especially when it comes to sown pasture. We measured ecosystem respiration and CH4 fluxes in response to a variety of potential drivers (soil temperature, soil moisture, ammonium nitrogen, nitrate nitrogen and dissolved organic carbon) in CG (continuous grazing), RG (rotational grazing) and UG (ungrazed) plots in sown grassland for one year in Inner Mongolia. Fluxes of CH4 and ecosystem respiration were measured using static opaque chambers and gas chromatography. Grazing significantly reduced ecosystem respiration (p < 0.01), and grazing pattern significantly influenced respiration in CG and RG plots (p < 0.01). We find that the sown grassland is a net sink for atmospheric CH4. No influence of grazing pattern was observed on CH4 flux in CG, RG and UG (p > 0.05). Soil temperature is the most important factor influencing ecosystem respiration and CH4 flux in the sown grassland, with soil moisture playing a secondary role to soil temperature. Variation in levels of ammonium nitrogen, nitrate nitrogen and dissolved organic carbon had little influence on ecosystem respiration or CH4 flux (except in UG plots). The values obtained for ecosystem respiration of grasslands have a large uncertainty range, which may be due to spatial variability as well as differences in research methods. Mean CH4 fluxes measured only during the growing season were much higher than the annual mean CH4 fluxes.


Sign in / Sign up

Export Citation Format

Share Document