scholarly journals Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica

Author(s):  
P. Campagne ◽  
X. Crosta ◽  
S. Schmidt ◽  
M. N. Houssais ◽  
O. Ther ◽  
...  

Abstract. Diatoms account for a large proportion of primary productivity in Antarctic coastal and continental shelf zones. Diatoms, which have been used for a long time to infer past sea-surface conditions in the Southern Ocean, have recently been associated with diatom specific biomarkers (HBI). Our study is of the few sedimentary research projects on diatom ecology and associated biomarkers in the Antarctic seasonal sea ice zone. To date, the Adélie Land marginal ice zone has received little attention, despite evidence for the presence of high-resolution laminated sediment accumulation, allowing for finer climate reconstructions and sedimentary process studies. Here we provide a sequence of seasonally to annually laminated diatomaceous sediment from the DTCI2010 interface core retrieved on the continental shelf off Adélie Land, covering the 1970–2010 CE period. Investigations through statistical analyses of diatom communities, diatom specific biomarkers and major element abundances document the relationships between these proxies at an unprecedented resolution. Additionally, comparison of sedimentary records to meteorological data monitored by automatic weather station and satellite derived sea ice concentrations help to refine the relationships between our proxies and environmental conditions over the last decades. Our results suggest a coupled interaction of the atmospheric and sea surface variability on sea ice seasonality, which acts as the proximal forcing of siliceous productivity at that scale.

2016 ◽  
Vol 13 (14) ◽  
pp. 4205-4218 ◽  
Author(s):  
Philippine Campagne ◽  
Xavier Crosta ◽  
Sabine Schmidt ◽  
Marie Noëlle Houssais ◽  
Olivier Ther ◽  
...  

Abstract. Diatoms account for a large proportion of primary productivity in Antarctic coastal and continental shelf zones. Diatoms, which have been used for a long time to infer past sea surface conditions in the Southern Ocean, have recently been associated with diatom-specific biomarkers (highly branched isoprenoids, HBI). Our study is one of the few sedimentary research projects on diatom ecology and associated biomarkers in the Antarctic seasonal sea ice zone. To date, the Adélie Land region has received little attention, despite evidence for the presence of high accumulation of laminated sediment, allowing for finer climate reconstructions and sedimentary process studies. Here we provide a sequence of seasonally to annually laminated diatomaceous sediment from a 72.5 cm interface core retrieved on the continental shelf off Adélie Land, covering the 1970–2010 CE period. Investigations through statistical analyses of diatom communities, diatom-specific biomarkers and major element abundances document the relationships between these proxies at an unprecedented resolution. Additionally, comparison of sedimentary records to meteorological data monitored by automatic weather station and satellite derived sea ice concentrations help to refine the relationships between our proxies and environmental conditions over the last decades. Our results suggest a coupled interaction of the atmospheric and sea surface variability on sea ice seasonality, which acts as the proximal forcing of siliceous productivity at that scale.


Author(s):  
Ekaterina Shchurova ◽  
Ekaterina Shchurova ◽  
Rimma Stanichnaya ◽  
Rimma Stanichnaya ◽  
Sergey Stanichny ◽  
...  

Sivash bay is the shallow-water lagoon of the Azov Sea. Restricted water exchange and high evaporation form Sivash as the basin with very high salinity. This factor leads to different from the Azov Sea thermal and ice regimes of Sivash. Maine aim of the study presented to investigate recent state and changes of the characteristics and processes in the basin using satellite data. Landsat scanners TM, ETM+, OLI, TIRS together with MODIS and AVHRR were used. Additionally NOMADS NOAA and MERRA meteorological data were analyzed. The next topics are discussed in the work: 1. Changes of the sea surface temperature, ice regime and relation with salinity. 2. Coastal line transformation – long term and seasonal, wind impact. 3. Manifestation of the Azov waters intrusions through the Arabat spit, preferable wind conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


1979 ◽  
Vol 84 (C8) ◽  
pp. 4885 ◽  
Author(s):  
W. B. Tucker ◽  
W. F. Weeks ◽  
M. Frank
Keyword(s):  
Sea Ice ◽  

Sign in / Sign up

Export Citation Format

Share Document