scholarly journals Sea ice ridging over the Alaskan Continental Shelf

1979 ◽  
Vol 84 (C8) ◽  
pp. 4885 ◽  
Author(s):  
W. B. Tucker ◽  
W. F. Weeks ◽  
M. Frank
Keyword(s):  
Sea Ice ◽  
Ocean Science ◽  
2011 ◽  
Vol 7 (2) ◽  
pp. 185-202 ◽  
Author(s):  
G. D. Williams ◽  
M. Hindell ◽  
M.-N. Houssais ◽  
T. Tamura ◽  
I. C. Field

Abstract. Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140–148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200–300 m are used to estimate the ocean heat content (400→50 MJ m−2), flux (50–200 W m−2 loss) and sea ice growth rates (maximum of 7.5–12.5 cm day−1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992–2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.


2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

<p>Deep and bottom water formation regions have long been recognized to be efficient vectors for carbon transfer to depth, leading to carbon sequestration on time scales of centuries or more. Precursors of Antarctic Bottom Water (AABW) are formed on the Weddell Sea continental shelf as a consequence of buoyancy loss of surface waters at the ice-ocean or atmosphere-ocean interface, which suggests that any change in water mass transformation rates in this area affects global carbon cycling and hence climate. Many of the models previously used to assess AABW formation in present and future climates contained only crude representations of ocean-ice shelf interaction. Numerical simulations often featured spurious deep convection in the open ocean, and changes in carbon sequestration have not yet been assessed at all. Here, we present results from the global model FESOM-REcoM, which was run on a mesh with elevated grid resolution in the Weddell Sea and which includes an explicit representation of sea ice and ice shelves. Forcing this model with ssp585 scenario output from the AWI Climate Model, we assess changes over the 21<sup>st</sup> century in the formation and northward export of dense waters and the associated carbon fluxes within and out of the Weddell Sea. We find that the northward transport of dense deep waters (σ<sub>2</sub>>37.2 kg m<sup>-3</sup> below 2000 m) across the SR4 transect, which connects the tip of the Antarctic Peninsula with the eastern Weddell Sea, declines from 4 Sv to 2.9 Sv by the year 2100. Concurrently, despite the simulated continuous increase in surface ocean CO<sub>2</sub> uptake in the Weddell Sea over the 21<sup>st</sup> century, the carbon transported northward with dense deep waters declines from 3.5 Pg C yr<sup>-1</sup> to 2.5 Pg C yr<sup>-1</sup>, demonstrating the dominant role of dense water formation rates for carbon sequestration. Using the water mass transformation framework, we find that south of SR4, the formation of downwelling dense waters declines from 3.5 Sv in the 1990s to 1.6 Sv in the 2090s, a direct result of the 18% lower sea-ice formation in the area, the increased presence of modified Warm Deep Water on the continental shelf, and 50% higher ice shelf basal melt rates. Given that the reduced formation of downwelling water masses additionally occurs at lighter densities in FESOM-REcoM in the 2090s, this will directly impact the depth at which any additional oceanic carbon uptake is stored, with consequences for long-term carbon sequestration.</p>


2021 ◽  
Author(s):  
Claudia Wekerle ◽  
Ralph Timmermann ◽  
Qiang Wang ◽  
Rebecca McPherson

<p>The 79° North Glacier (79NG) is the largest of the marine terminating glaciers fed by the  Northeast Greenland Ice Stream (NEGIS), which drains around 15% of the Greenland ice sheet. The 79NG is one of the few Greenland glaciers with a floating ice tongue, and is strongly influenced by warm Atlantic Water originating from Fram Strait and carried towards it through a trough system on the Northeast Greenland continental shelf.</p><p>Considering the decrease in thickness of the 79NG and also of the neighboring Zachariae Isstrøm (ZI), we aim to understand the processes that potentially lead to the decay of these glaciers. As a first step we present here an ocean-sea ice simulation which explicitly resolves the cavities of the 79NG and ZI glaciers, applying the Finite-Element Sea ice-Ocean Model (FESOM). We take advantage of the multi-resolution capability of FESOM and locally increase mesh resolution in the vicinity of the 79NG to 700 m. The Northeast Greenland continental shelf is resolved with 3 km, and the Arctic Ocean and Nordic Seas with 4.5 km. The simulation is conducted for the time period 1980 to 2018, using JRA-55 atmospheric reanalysis. Solid and liquid runoff from Greenland is taken from the Bamber et al. 2018 dataset. The flow of warm Atlantic water into the glacier and outflow of meltwater is compared to observational data from measurement campaigns. We further use current and hydrographic data from moorings deployed in Norske Trough to assess the model performance in carrying warm water towards the glacier. This simulation spanning several decades allows us to investigate recent changes in basal melt rates induced by oceanic processes, in particular warm Atlantic Water transport towards the glacier.</p>


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 305-316 ◽  
Author(s):  
H. H. Hellmer ◽  
O. Huhn ◽  
D. Gomis ◽  
R. Timmermann

Abstract. We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.


2019 ◽  
Vol 03 (01) ◽  
pp. 29-43
Author(s):  
Alfred Scott McLaren

“Exploration of Extreme Underwater Environments” briefly recounts the highlights of the author’s experiences during the exploration of an extreme underwater environment: As commander of the nuclear attack submarine, USS Queenfish (SSN 651) during the historic first survey of 5,200 km of the entire uncharted, sea-ice covered, Siberian Continental Shelf during the summer of 1970.


2017 ◽  
Author(s):  
Pierre Mathiot ◽  
Adrian Jenkins ◽  
Christopher Harris ◽  
Gurvan Madec

Abstract. Ice shelf/ocean interactions are a major source of fresh water on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean/sea ice model NEMO currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface) inclusion of open sub-ice-shelf leads to a decrease sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of HSSW on the Ross and Weddell Sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the under ice shelf seas overturning circulation by introducing the meltwater over the depth range of the ice shelf base, rather than at the surface is also tested. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf than the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely-used “3 equations” ice shelf melting formulation enables an interactive computation of melting that has been assessed. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for Amery, Getz and George VI ice shelves are considerably overestimated.


2019 ◽  
Vol 49 (8) ◽  
pp. 2043-2074 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andreas Klocker ◽  
Dimitris Menemenlis

AbstractAll exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.


2003 ◽  
Vol 15 (1) ◽  
pp. 1-1
Author(s):  
STANLEY S. JACOBS

The first oceanographic measurements in the Ross Sea were made by its discoverer James Clark Ross, from the Erebus, on 18 January 1841. Since that time its continental shelf, seasonally ice free in most years, has proved a magnet to explorers and scientists, if not to fishermen and tourists. Nevertheless, our knowledge of this environment is rapidly being outpaced by our ignorance of its variability. For example, the Ross Sea contains two of the largest, most persistent polynyas on the Antarctic coastline, but its sea ice extent has increased over recent decades while its salinity has steadily declined. Are regional winds now stronger, the ocean circulation faster, and the ice thinner now than at the time of the IGY? Are its winter polynyas characterized more by upwelling driven by offshore winds, or downwelling due to brine release when sea ice is formed? How are polynya surface layers stabilized and iron-enriched, reportedly enhancing summer productivity, if the ice cover is blown away before it can melt in situ?


2016 ◽  
Author(s):  
P. Campagne ◽  
X. Crosta ◽  
S. Schmidt ◽  
M. N. Houssais ◽  
O. Ther ◽  
...  

Abstract. Diatoms account for a large proportion of primary productivity in Antarctic coastal and continental shelf zones. Diatoms, which have been used for a long time to infer past sea-surface conditions in the Southern Ocean, have recently been associated with diatom specific biomarkers (HBI). Our study is of the few sedimentary research projects on diatom ecology and associated biomarkers in the Antarctic seasonal sea ice zone. To date, the Adélie Land marginal ice zone has received little attention, despite evidence for the presence of high-resolution laminated sediment accumulation, allowing for finer climate reconstructions and sedimentary process studies. Here we provide a sequence of seasonally to annually laminated diatomaceous sediment from the DTCI2010 interface core retrieved on the continental shelf off Adélie Land, covering the 1970–2010 CE period. Investigations through statistical analyses of diatom communities, diatom specific biomarkers and major element abundances document the relationships between these proxies at an unprecedented resolution. Additionally, comparison of sedimentary records to meteorological data monitored by automatic weather station and satellite derived sea ice concentrations help to refine the relationships between our proxies and environmental conditions over the last decades. Our results suggest a coupled interaction of the atmospheric and sea surface variability on sea ice seasonality, which acts as the proximal forcing of siliceous productivity at that scale.


Sign in / Sign up

Export Citation Format

Share Document