scholarly journals Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

2016 ◽  
Author(s):  
Raquel Vaquer-Sunyer ◽  
Heather E. Reader ◽  
Saraladevi Muthusamy ◽  
Markus V. Lindh ◽  
Jarone Pinhassi ◽  
...  

Abstract. The Baltic Sea is the largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in 4 experiments. We tested for effects of effluent inputs on chlorophyll a content, on bacterial community composition, and on metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and shifts the ecosystem towards heterotrophy.

2016 ◽  
Vol 13 (16) ◽  
pp. 4751-4765 ◽  
Author(s):  
Raquel Vaquer-Sunyer ◽  
Heather E. Reader ◽  
Saraladevi Muthusamy ◽  
Markus V. Lindh ◽  
Jarone Pinhassi ◽  
...  

Abstract. The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Kasia Piwosz ◽  
Ana Vrdoljak ◽  
Thijs Frenken ◽  
Juan Manuel González-Olalla ◽  
Danijela Šantić ◽  
...  

ABSTRACT Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions. IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.


2015 ◽  
Vol 97 (1-2) ◽  
pp. 135-149 ◽  
Author(s):  
Raisa Turja ◽  
Kari K. Lehtonen ◽  
Axel Meierjohann ◽  
Jenny-Maria Brozinski ◽  
Emil Vahtera ◽  
...  

2018 ◽  
Author(s):  
Carolina Suarez ◽  
Maria Piculell ◽  
Oskar Modin ◽  
Silke Langenheder ◽  
Frank Persson ◽  
...  

ABSTRACTMicrobial biofilms are important in natural ecosystems and in biotechnological applications. Biofilm architecture influences organisms’ spatial positions, who their neighbors are, and redox gradients, which in turn determine functions. We ask if and how biofilm thickness influences community composition, architecture and functions. But biofilm thickness cannot easily be isolated from external environmental factors. We designed a metacommunity system in a wastewater treatment plant, where either 50 or 400 µm thick nitrifying biofilms were grown simultaneously on biofilm carriers in the same reactor. Model simulations showed that the 50 µm biofilms could be fully oxygenated whereas the 400 µm biofilms contained anaerobic zones. The 50 and 400 µm biofilms developed significantly different communities. due to deterministic factors were stronger than homogenizing dispersal forces in the reactor, despite the fact that biofilms experienced the same history and external conditions. Relative abundance of aerobic nitrifiers was higher in the 50 µm biofilms, while anaerobic ammonium oxidizers were more abundant in the 400 µm biofilms. However, turnover was larger than the nestedness component of between-group beta-diversity, i.e. the 50 µm biofilm was not just a subset of the thicker 400 µm biofilm with reduced taxa richness. Furthermore, the communities had different nitrogen transformation rates. The study shows that biofilm thickness has a strong impact on community composition and ecosystem function, which has implications for biotechnological applications, and for our general understanding of biofilms.IMPORTANCEMicroorganisms colonize all surfaces in water and form biofilms. Diffusion limitations form steep gradients of energy and nutrient sources from the water phase into the deeper biofilm parts, influencing community composition through the biofilm. Thickness of the biofilm will affect diffusion gradients, and is therefore presumably important for biofilm composition. Since environmental factors determine thickness, studies of how thickness influences biofilm functions and community assembly, have been difficult to perform. We studied biofilms for wastewater treatment with fixed thicknesses of 50 and 400 µm during otherwise similar conditions and history. Despite growing in the same wastewater reactor, 16S rRNA gene sequencing and confocal microscopy showed the formation of two different communities, performing different ecosystem functions. Using statistical methods, we show for the first time, how biofilm thickness influences community assembly. The results help our understanding of the ecology of microbial biofilms, and in designing engineered systems based on ecological principles.


Sign in / Sign up

Export Citation Format

Share Document