scholarly journals Biofilm thickness matters: Deterministic assembly of different functions and communities in nitrifying biofilms

2018 ◽  
Author(s):  
Carolina Suarez ◽  
Maria Piculell ◽  
Oskar Modin ◽  
Silke Langenheder ◽  
Frank Persson ◽  
...  

ABSTRACTMicrobial biofilms are important in natural ecosystems and in biotechnological applications. Biofilm architecture influences organisms’ spatial positions, who their neighbors are, and redox gradients, which in turn determine functions. We ask if and how biofilm thickness influences community composition, architecture and functions. But biofilm thickness cannot easily be isolated from external environmental factors. We designed a metacommunity system in a wastewater treatment plant, where either 50 or 400 µm thick nitrifying biofilms were grown simultaneously on biofilm carriers in the same reactor. Model simulations showed that the 50 µm biofilms could be fully oxygenated whereas the 400 µm biofilms contained anaerobic zones. The 50 and 400 µm biofilms developed significantly different communities. due to deterministic factors were stronger than homogenizing dispersal forces in the reactor, despite the fact that biofilms experienced the same history and external conditions. Relative abundance of aerobic nitrifiers was higher in the 50 µm biofilms, while anaerobic ammonium oxidizers were more abundant in the 400 µm biofilms. However, turnover was larger than the nestedness component of between-group beta-diversity, i.e. the 50 µm biofilm was not just a subset of the thicker 400 µm biofilm with reduced taxa richness. Furthermore, the communities had different nitrogen transformation rates. The study shows that biofilm thickness has a strong impact on community composition and ecosystem function, which has implications for biotechnological applications, and for our general understanding of biofilms.IMPORTANCEMicroorganisms colonize all surfaces in water and form biofilms. Diffusion limitations form steep gradients of energy and nutrient sources from the water phase into the deeper biofilm parts, influencing community composition through the biofilm. Thickness of the biofilm will affect diffusion gradients, and is therefore presumably important for biofilm composition. Since environmental factors determine thickness, studies of how thickness influences biofilm functions and community assembly, have been difficult to perform. We studied biofilms for wastewater treatment with fixed thicknesses of 50 and 400 µm during otherwise similar conditions and history. Despite growing in the same wastewater reactor, 16S rRNA gene sequencing and confocal microscopy showed the formation of two different communities, performing different ecosystem functions. Using statistical methods, we show for the first time, how biofilm thickness influences community assembly. The results help our understanding of the ecology of microbial biofilms, and in designing engineered systems based on ecological principles.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1557 ◽  
Author(s):  
Sandra Clinton ◽  
James Johnson ◽  
Kevin Lambirth ◽  
Shan Sun ◽  
Cory Brouwer ◽  
...  

Urban streams are heavily influenced by human activity. One way that this occurs is through the reintroduction of treated effluent from wastewater treatment plants. We measured the microbial community composition of water, sediment, and soil at sites upstream and downstream from two Charlotte treatment facilities. We performed 16S rRNA gene sequencing to assay the microbial community composition at each site at four time points between the late winter and mid-summer of 2016. Despite the location of these streams in an urban area with many influences and disruptions, the streams maintain distinct water, sediment, and soil microbial profiles. While there is an overlap of microbial species in upstream and downstream sites, there are several taxa that differentiate these sites. Some taxa characteristics of human-associated microbial communities appear elevated in the downstream sediment communities. In the wastewater treatment plant and to a lesser extent in the downstream community, there are high abundance amplicon sequence variants (ASVs) which are less than 97% similar to any sequence in reference databases, suggesting that these environments contain an unexplored biological novelty. Taken together, these results suggest a need to more fully characterize the microbial communities associated with urban streams, and to integrate information about microbial community composition with mechanistic models.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1488-1494 ◽  
Author(s):  
Daichi Fujii ◽  
Fumiko Nagai ◽  
Yohei Watanabe ◽  
Yukio Shirasawa

Two Gram-staining-negative, strictly aerobic, non-endospore-forming, non-motile, rod-shaped bacteria, designated strains YIT 12745T and YIT 12746T, were isolated from sludge from a wastewater treatment plant. 16S rRNA gene sequence analyses indicated that these strains belonged to the genus Flavobacterium . In these analyses, strains YIT 12745T and YIT 12746T were most closely related to the type strains of Flavobacterium caeni and Flavobacterium terrigena , with 16S rRNA gene sequence similarity values of 94.9 % and 96.2 %, respectively. For both novel strains, menaquinone (MK-6) was the only respiratory quinone. The major fatty acids of strain YIT 12745T were iso-C15 : 1 G (14.4 %), iso-C16 : 0 (13.2 %), C15 : 0 (12.9 %), iso-C15 : 0 (12.9 %) and iso-C17 : 0 3-OH (11.5 %). Those of strain YIT 12746T were iso-C15 : 0 (21.5 %), iso-C16 : 0 (13.3 %), C15 : 0 (12.0 %) and iso-C15 : 1 G (11.9 %). The genomic DNA G+C contents of strains YIT 12745T and YIT 12746T were 48.7 and 30.9 mol%, respectively. From their differential phenotypic and phylogenetic characteristics, these strains are considered to represent two novel species of the genus Flavobacterium , for which the names Flavobacterium longum sp. nov. (type strain YIT 12745T = JCM 19141T = DSM 27077T) and Flavobacterium urocaniciphilum sp. nov. (type strain YIT 12746T = JCM 19142T = DSM 27078T) are proposed. Emended descriptions of Flavobacterium caeni and Flavobacterium terrigena are also proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 747-751 ◽  
Author(s):  
Zubair Aslam ◽  
Wan-Taek Im ◽  
Myung Kyum Kim ◽  
Sung-Taik Lee

A Gram-negative, rod-shaped, non-spore-forming bacterium (designated strain Kw05T) was isolated from granules used in the wastewater treatment plant of a beer-brewing factory in Kwang-Ju, Republic of Korea. On the basis of 16S rRNA gene sequence similarity, strain Kw05T was shown to belong to the family Flavobacteriaceae, and was most closely related to Flavobacterium limicola (96·6 %), Flavobacterium hibernum (96·3 %), Flavobacterium hydatis (96·1 %) and Flavobacterium xinjiangense (96·1 %). The G+C content of the genomic DNA of strain Kw05T was 36·2 mol%, within the range of 32–37 mol% for the genus Flavobacterium. Chemotaxonomic data (major menaquinone MK-6; major fatty acids iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and iso-C17 : 1 ω9c) supported the classification of strain Kw05T within the genus Flavobacterium. Kw05T therefore represents a novel species, for which the name Flavobacterium granuli sp. nov. is proposed. The type strain is Kw05T (=KCTC 12201T=IAM 15099T).


FACETS ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Claire N. Freeman ◽  
Lena Scriver ◽  
Kara D. Neudorf ◽  
Lisbeth Truelstrup Hansen ◽  
Rob C. Jamieson ◽  
...  

Wastewater treatment plants (WWTPs) have been identified as hotspots for antimicrobial resistance genes (ARGs) and thus represent a critical point where patterns in ARG abundances can be monitored prior to their release into the environment. The aim of the current study was to measure the impact of the release of the final treated effluent (FE) on the abundance of ARGs in the receiving water of a recently upgraded WWTP in the Canadian prairies. Sample nutrient content (phosphorous and nitrogen species) was measured as a proxy for WWTP functional performance, and quantitative PCR (qPCR) was used to measure the abundance of eight ARGs, the intI1 gene associated with class I integrons, and the 16S rRNA gene. The genes ermB, sul1, intI1, blaCTX-M, qnrS, and tetO all had higher abundances downstream of the WWTP, consistent with the genes with highest abundance in the FE. These findings are consistent with the increasing evidence suggesting that human activity affects the abundances of ARGs in the environment. Although the degree of risk associated with releasing ARGs into the environment is still unclear, understanding the environmental dimension of this threat will help develop informed management policies to reduce the spread of antibiotic resistance and protect public health.


2000 ◽  
Vol 66 (3) ◽  
pp. 1167-1174 ◽  
Author(s):  
A. C. Layton ◽  
P. N. Karanth ◽  
C. A. Lajoie ◽  
A. J. Meyers ◽  
I. R. Gregory ◽  
...  

ABSTRACT The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work onHyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained fromHyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T inHyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those ofHyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specificHyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed thatHyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed forHyphomicrobium cluster I and Hyphomicrobiumcluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.


Sign in / Sign up

Export Citation Format

Share Document