scholarly journals Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada

2017 ◽  
Author(s):  
Cara A. Bulger ◽  
Suzanne E. Tank ◽  
Steven V. Kokelj

Abstract. In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTS) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the continental ice sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high, and total disturbed areas often exceeding 30 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to a conservative tracer suggest that the substantial fine-grained sediments released by slumping may sequester DOC on this landscape. Runoff obtained directly from within slump features, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, have the lowest runoff DOC concentrations when compared to upstream, un-disturbed locations. In contrast, shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS feature indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect striking variation in thermokarst-associated DOC mobilization across Arctic regions, but that within-region variation in thermokarst intensity and other landscape factors are also important for determining biogeochemical response. An understanding of landscape and climate history, permafrost genesis, soil composition, the nature and intensity of thermokarst, and the interaction of these factors, is critical for predicting changes in land-to-water carbon mobilization in a warming circumpolar world.

2017 ◽  
Vol 14 (23) ◽  
pp. 5487-5505 ◽  
Author(s):  
Cara A. Littlefair ◽  
Suzanne E. Tank ◽  
Steven V. Kokelj

Abstract. In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in thermokarst-associated DOC mobilization across Arctic regions. However, they also show that within-region variation in thermokarst intensity and landscape composition is critical for determining the biogeochemical response. Geological and climate legacy shape the physical and chemical composition of permafrost and thermokarst potential. As such, these factors must be considered in predictions of land-to-water carbon mobilization in a warming Arctic.


2017 ◽  
Author(s):  
Tsung-Yu Lee ◽  
Li-Chin Lee ◽  
Jr-Chuan Huang ◽  
Shih-Hao Jien ◽  
Thomas Hein ◽  
...  

Abstract. Small mountainous rivers (SMRs) are important conveyors of the land-to-ocean organic carbon export. However, relatively few studies have focused on dissolved organic carbon (DOC) compared to particulate organic carbon. In a long-term project (2002 to 2014), stream DOC was monitored in three neighboring subtropical small mountainous rivers of Taiwan. The objective was to relate DOC concentrations to water discharge and to quantify DOC flux during typhoon and non-typhoon periods. Seasonal fluctuations of DOC concentrations were closely correlated with air temperature at all sampling stations. During non-typhoon periods, increasing water discharge led to decreasing DOC concentrations due to a dilution effect. However, during typhoon periods, DOC concentrations increased with some lead time along the hydrograph and reached the annual maximum which likely sources from a significant input of litter and upper soil layers. The mean DOC concentration of the studied systems (


2018 ◽  
Author(s):  
Patrick Martin ◽  
Nagur Cherukuru ◽  
Ashleen S. Y. Tan ◽  
Nivedita Sanwlani ◽  
Aazani Mujahid ◽  
...  

Abstract. South-East Asia is home to one of the world's largest stores of tropical peatland, and accounts for roughly 10 % of the global land-to-sea dissolved organic carbon (DOC) flux. We present the first-ever seasonally-resolved measurements of DOC concentration and chromophoric dissolved organic matter (CDOM) spectra for six peatland-draining rivers and coastal waters in Sarawak, north-western Borneo. The rivers differed substantially in DOC concentration, ranging from 120–250 µmol L−1 (Rajang river) to 3,100–4,400 µmol L−1 (Maludam river). All rivers carried high CDOM concentrations, with a350 in the four blackwater rivers between 70–210 m−1, and 4–12 m−1 in the other two rivers. DOC and CDOM showed conservative mixing with seawater except in the largest river (the Rajang), where DOC concentrations in the estuary were elevated, most likely due to inputs from the extensive peatlands within the Rajang delta. Seasonal variation was moderate and inconsistent between rivers. However, during the rainier north-east monsoon, all marine stations in the western part of our study area had higher DOC concentrations and lower CDOM spectral slopes, indicating a greater proportion of terrigenous DOM in coastal waters. Photo-degradation experiments revealed that riverine DOC and CDOM in Sarawak are photo-labile: up to 25 % of riverine DOC was lost within five days of exposure to natural sunlight, and the spectral slopes of photo-bleached CDOM resembled those of our marine samples. We conclude that coastal waters of Sarawak receive large inputs of terrigenous DOC that is only minimally altered during estuarine transport, and that any biogeochemical processing must therefore occur mostly at sea. It is likely that photo-degradation plays an important role in the degradation of terrigenous DOC in these waters.


2018 ◽  
Vol 15 (22) ◽  
pp. 6847-6865 ◽  
Author(s):  
Patrick Martin ◽  
Nagur Cherukuru ◽  
Ashleen S. Y. Tan ◽  
Nivedita Sanwlani ◽  
Aazani Mujahid ◽  
...  

Abstract. South-East Asia is home to one of the world's largest stores of tropical peatland and accounts for roughly 10 % of the global land-to-sea dissolved organic carbon (DOC) flux. We present the first ever seasonally resolved measurements of DOC concentration and chromophoric dissolved organic matter (CDOM) spectra for six peatland-draining rivers and coastal waters in Sarawak, north-western Borneo. The rivers differed substantially in DOC concentration, ranging from 120–250 µmol L−1 (Rajang River) to 3100–4400 µmol L−1 (Maludam River). All rivers carried high CDOM concentrations, with a350 in the four blackwater rivers between 70 and 210 m−1 and 4 and 12 m−1 in the other two rivers. DOC and CDOM showed conservative mixing with seawater except in the largest river (the Rajang), where DOC concentrations in the estuary were elevated, most likely due to inputs from the extensive peatlands within the Rajang Delta. Seasonal variation was moderate and inconsistent between rivers. However, during the rainier north-east monsoon, all marine stations in the western part of our study area had higher DOC concentrations and lower CDOM spectral slopes, indicating a greater proportion of terrigenous DOM in coastal waters. Photodegradation experiments revealed that riverine DOC and CDOM in Sarawak are photolabile: up to 25 % of riverine DOC was lost within 5 days of exposure to natural sunlight, and the spectral slopes of photo-bleached CDOM resembled those of our marine samples. We conclude that coastal waters of Sarawak receive large inputs of terrigenous DOC that is only minimally altered during estuarine transport and that any biogeochemical processing must therefore occur mostly at sea. It is likely that photodegradation plays an important role in the degradation of terrigenous DOC in these waters.


2019 ◽  
Author(s):  
Linhua Wang ◽  
Haw Yen ◽  
Xinhui E ◽  
Liding Chen ◽  
Yafeng Wang

Abstract. Dissolved organic carbon (DOC) transported by surface runoff has been identified as an important role of the global carbon cycle. Despite there being many studies on DOC concentration and flux, but little information is available in semi-arid catchments of the Loess Plateau Region (LPR). The primary goal of this study was to quantify DOC exported from a sequence of runoff events during the concentrated rainfall season. In addition, factors that affect DOC export from a small headwater catchment will be investigated accordingly. Runoff discharge and DOC concentration were monitored at the outlet of the Yangjuangou catchment in Yanan, Shaanxi Province, China. The results showed that DOC concentration was highly variable (1.91–34.70 mg L−1), with event-based DOC concentrations ranging from 4.08 to 15.66 mg L−1. The mean monthly DOC flux loading from the catchment was 94.73–110.17 kg km−2 from June to September, while the event-based DOC flux ranged from 0.08 to 2.81 kg km−2. Intra-events of rainfall amount and runoff discharge led to event-based/monthly differences in DOC concentration and flux. Hysteresis analysis showed a nonlinear relationship between DOC concentration and discharge in the runoff process. Our results highlighted the advantages of high-frequency monitoring for DOC export and indicated that DOC export from a catchment is largely influenced by the interaction of rainfall and antecedent conditions for a rainfall event. Engineering and scientists can take advantage of the derived results to better develop advanced field monitoring work. In addition, release of DOC runoff can take quantified during hydrological and biogeochemical processes within catchments in LPR.


2011 ◽  
Vol 8 (12) ◽  
pp. 3661-3675 ◽  
Author(s):  
M. I. Stutter ◽  
D. G. Lumsdon ◽  
A. P. Rowland

Abstract. Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC). Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively), declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1) considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2) freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport) controls may, at present, be governing the more ubiquitous rises in river DOC concentration trends, but soil (i.e. source) controls provide the key to prediction of future C loss to waters and the atmosphere.


2011 ◽  
Vol 74 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Krzysztof Banaś

The effect of dissolved organic carbon (DOC) on the environmental conditions of macrophytes has been studied in 35 lakes divided into soft- and hardwater: oligohumic (&lt;4.0 mg C dm<sup>-3</sup>), α-mesohumic (4.0-8.0 mg C dm<sup>-3</sup>), β-mesohumic (8.1-16.0 mg C dm<sup>-3</sup>) and polihumic (&gt;16.0 mg C dm<sup>-3</sup>). The optimum environmental conditions for macrophytes have been found in oligohumic lakes, characterised by low water colour and its good transparency. In soft- and hardwater lakes increasing concentration of DOC is accompanied with an increase in the colour (r=0.95), while the visibility decreases. With increasing DOC in the near-sediment layer the pH values decrease while the concentration of nitrogen increases and the concentration of phosphorus slightly increases. In hardwater lakes with increasing DOC concentration, the redox potential, conductivity, total hardness and calcium concentration in the near-sediment water decrease, whereas the content of CO<sup>2</sup> remains at a very low level.


1986 ◽  
Vol 84 ◽  
Author(s):  
J.I. Kim ◽  
G. Buckau ◽  
W. Zhuang

AbstractThe generation of humic colloids of Am(III) has been investigated in Gorleben groundwaters containing different amounts of humic substances. Dissolved organic carbon (DOC) in these groundwaters consists mainly of humic acid and fulvic acid, which is present in a colloidal form through aggregation with trace heavy metal ions of groundwater constituents. Concentrations of these heavy metal ions are proportional to the DOC concentration. The generation of Am(III) pseudocolloids through geochemical interactions with humic colloids in different groundwaters is quantified by ultrafiltration as well as ultracentrifugation by the aid of radiometric concentration measurements. The speciation of dissolved Am(III) species in groundwaters is carried out by laser induced photoacoustic spectroscopy (LPAS).


Sign in / Sign up

Export Citation Format

Share Document