scholarly journals Emergent relationships on burned area in global satellite observations and fire-enabled vegetation models

Author(s):  
Matthias Forkel ◽  
Niels Andela ◽  
Sandy P. Harrison ◽  
Gitta Lasslop ◽  
Margreet van Marle ◽  
...  

Abstract. Recent climate changes increases fire-prone weather conditions and likely affects fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess how process-based fire-enabled Dynamic Global Vegetation Models (DGVMs) represent relationships between controlling factors and burned area. We developed a pattern-oriented model evaluation approach using the random forest (RF) algorithm to identify emergent relationships between climate, vegetation, and socioeconomic predictor variables and burned area. We applied this approach to monthly burned area time series for the period 2005–2011 from satellite observations and from DGVMs from the Fire Model Inter-comparison Project (FireMIP) that were run using a common protocol and forcing datasets. The satellite-derived relationships indicate strong sensitivity to climate variables (e.g. maximum temperature, number of wet days), vegetation properties (e.g. vegetation type, previous-season plant productivity and leaf area, woody litter), and to socioeconomic variables (e.g. human population density). DGVMs broadly reproduce the relationships to climate variables and some models to population density. Interestingly, satellite-derived responses show a strong increase of burned area with previous-season leaf area index and plant productivity in most fire-prone ecosystems which was largely underestimated by most DGVMs. Hence our pattern-oriented model evaluation approach allowed to diagnose that current fire-enabled DGVMs represent some controls on fire to a large extent but processes linking vegetation productivity and fire occurrence need to be improved to accurately simulate the role of fire under global environmental change.

2019 ◽  
Vol 16 (1) ◽  
pp. 57-76 ◽  
Author(s):  
Matthias Forkel ◽  
Niels Andela ◽  
Sandy P. Harrison ◽  
Gitta Lasslop ◽  
Margreet van Marle ◽  
...  

Abstract. Recent climate changes have increased fire-prone weather conditions in many regions and have likely affected fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess how process-based fire-enabled dynamic global vegetation models (DGVMs) represent relationships between controlling factors and burned area. We developed a pattern-oriented model evaluation approach using the random forest (RF) algorithm to identify emergent relationships between climate, vegetation, and socio-economic predictor variables and burned area. We applied this approach to monthly burned area time series for the period from 2005 to 2011 from satellite observations and from DGVMs from the “Fire Modeling Intercomparison Project” (FireMIP) that were run using a common protocol and forcing data sets. The satellite-derived relationships indicate strong sensitivity to climate variables (e.g. maximum temperature, number of wet days), vegetation properties (e.g. vegetation type, previous-season plant productivity and leaf area, woody litter), and to socio-economic variables (e.g. human population density). DGVMs broadly reproduce the relationships with climate variables and, for some models, with population density. Interestingly, satellite-derived responses show a strong increase in burned area with an increase in previous-season leaf area index and plant productivity in most fire-prone ecosystems, which was largely underestimated by most DGVMs. Hence, our pattern-oriented model evaluation approach allowed us to diagnose that vegetation effects on fire are a main deficiency regarding fire-enabled dynamic global vegetation models' ability to accurately simulate the role of fire under global environmental change.


2018 ◽  
Author(s):  
Matthias Forkel ◽  
Niels Andela ◽  
Sandy P. Harrison ◽  
Gitta Lasslop ◽  
Margreet van Marle ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 106
Author(s):  
Yevhen Melnyk ◽  
Vladimir Voron

Preservation and increase of forest area are necessary conditions for the biosphere functioning. Forest ecosystems in most parts of the world are affected by fires. According to the latest data, the forest fire situation has become complicated in Ukraine, and this issue requires ongoing investigation. The aim of the study was to analyse the dynamics of wildfires in Ukrainian forests over recent decades and to assess the complex indicator of wildfire occurrence in various forest management zones and administrative regions. The average annual complex indicator of fire occurrence, in terms of wildfire number and burned area, was studied in detail in the forests of various administrative regions and forest management zones in Ukraine from 1998 to 2017. The results show that fire occurrence in both the number and area of fires can vary significantly in various forest management zones. There is a very noticeable difference in these indicators in some administrative regions within a particular forest management zone. The data show that the number of forest fires depends not only on the natural and climatic conditions of such regions, but also on anthropogenic factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niloufar Nouri ◽  
Naresh Devineni ◽  
Valerie Were ◽  
Reza Khanbilvardi

AbstractThe annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefficients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The influence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.


2009 ◽  
Vol 104 (8) ◽  
pp. 1191-1193 ◽  
Author(s):  
Érika Monteiro Michalsky ◽  
Consuelo Latorre Fortes-Dias ◽  
João Carlos França-Silva ◽  
Marilia Fonseca Rocha ◽  
Ricardo Andrade Barata ◽  
...  

2016 ◽  
Author(s):  
Matthias Forkel ◽  
Wouter Dorigo ◽  
Gitta Lasslop ◽  
Irene Teubner ◽  
Emilio Chuvieco ◽  
...  

Abstract. Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. In particular, extreme fire conditions can cause devastating impacts on ecosystems and human society and dominate the year-to-year variability in global fire emissions. However, the climatic, environmental and socioeconomic factors that control fire activity in vegetation are only poorly understood and consequently it is unclear which components, structures, and complexities are required in global vegetation/fire models to accurately predict fire activity at a global scale. Here we introduce the SOFIA (Satellite Observations for FIre Activity) modelling approach, which integrates several satellite and climate datasets and different empirical model structures to systematically identify required structural components in global vegetation/fire models to predict burned area. Models result in the highest performance in predicting the spatial patterns and temporal variability of burned area if they account for a direct suppression of fire activity at wet conditions and if they include a land cover-dependent suppression or allowance of fire activity by vegetation density and biomass. The use of new vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. The SOFIA approach implements and confirms conceptual models where fire activity follows a biomass gradient and is modulated by moisture conditions. The use of datasets on population density or socioeconomic development do not improve model performances, which indicates that the complex interactions of human fire usage and management cannot be realistically represented by such datasets. However, the best SOFIA models outperform a highly flexible machine learning approach and the state-of-the art global process-oriented vegetation/fire model JSBACH-SPITFIRE. Our results suggest using multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with model-data integration approaches to guide the future development of global process-oriented vegetation/fire models and to better understand the interactions between fire and hydrological, ecological, and atmospheric Earth system components.


2016 ◽  
Vol 8 (3) ◽  
pp. 229 ◽  
Author(s):  
Jingyi Jiang ◽  
Zhiqiang Xiao ◽  
Jindi Wang ◽  
Jinling Song

2020 ◽  
Vol 20 (2) ◽  
pp. 969-994 ◽  
Author(s):  
Xiaohua Pan ◽  
Charles Ichoku ◽  
Mian Chin ◽  
Huisheng Bian ◽  
Anton Darmenov ◽  
...  

Abstract. Aerosols from biomass burning (BB) emissions are poorly constrained in global and regional models, resulting in a high level of uncertainty in understanding their impacts. In this study, we compared six BB aerosol emission datasets for 2008 globally as well as in 14 regions. The six BB emission datasets are (1) GFED3.1 (Global Fire Emissions Database version 3.1), (2) GFED4s (GFED version 4 with small fires), (3) FINN1.5 (FIre INventory from NCAR version 1.5), (4) GFAS1.2 (Global Fire Assimilation System version 1.2), (5) FEER1.0 (Fire Energetics and Emissions Research version 1.0), and (6) QFED2.4 (Quick Fire Emissions Dataset version 2.4). The global total emission amounts from these six BB emission datasets differed by a factor of 3.8, ranging from 13.76 to 51.93 Tg for organic carbon and from 1.65 to 5.54 Tg for black carbon. In most of the regions, QFED2.4 and FEER1.0, which are based on satellite observations of fire radiative power (FRP) and constrained by aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), yielded higher BB aerosol emissions than the rest by a factor of 2–4. By comparison, the BB aerosol emissions estimated from GFED4s and GFED3.1, which are based on satellite burned-area data, without AOD constraints, were at the low end of the range. In order to examine the sensitivity of model-simulated AOD to the different BB emission datasets, we ingested these six BB emission datasets separately into the same global model, the NASA Goddard Earth Observing System (GEOS) model, and compared the simulated AOD with observed AOD from the AErosol RObotic NETwork (AERONET) and the Multiangle Imaging SpectroRadiometer (MISR) in the 14 regions during 2008. In Southern Hemisphere Africa (SHAF) and South America (SHSA), where aerosols tend to be clearly dominated by smoke in September, the simulated AOD values were underestimated in almost all experiments compared to MISR, except for the QFED2.4 run in SHSA. The model-simulated AOD values based on FEER1.0 and QFED2.4 were the closest to the corresponding AERONET data, being, respectively, about 73 % and 100 % of the AERONET observed AOD at Alta Floresta in SHSA and about 49 % and 46 % at Mongu in SHAF. The simulated AOD based on the other four BB emission datasets accounted for only ∼50 % of the AERONET AOD at Alta Floresta and ∼20 % at Mongu. Overall, during the biomass burning peak seasons, at most of the selected AERONET sites in each region, the AOD values simulated with QFED2.4 were the highest and closest to AERONET and MISR observations, followed closely by FEER1.0. However, the QFED2.4 run tends to overestimate AOD in the region of SHSA, and the QFED2.4 BB emission dataset is tuned with the GEOS model. In contrast, the FEER1.0 BB emission dataset is derived in a more model-independent fashion and is more physically based since its emission coefficients are independently derived at each grid box. Therefore, we recommend the FEER1.0 BB emission dataset for aerosol-focused hindcast experiments in the two biomass-burning-dominated regions in the Southern Hemisphere, SHAF, and SHSA (as well as in other regions but with lower confidence). The differences between these six BB emission datasets are attributable to the approaches and input data used to derive BB emissions, such as whether AOD from satellite observations is used as a constraint, whether the approaches to parameterize the fire activities are based on burned area, FRP, or active fire count, and which set of emission factors is chosen.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 887 ◽  
Author(s):  
Kaiwei Luo ◽  
Xingwen Quan ◽  
Binbin He ◽  
Marta Yebra

Previous studies have shown that Live Fuel Moisture Content (LFMC) is a crucial driver affecting wildfire occurrence worldwide, but the effect of LFMC in driving wildfire occurrence still remains unexplored over the southwest China ecosystem, an area historically vulnerable to wildfires. To this end, we took 10-years of LFMC dynamics retrieved from Moderate Resolution Imaging Spectrometer (MODIS) reflectance product using the physical Radiative Transfer Model (RTM) and the wildfire events extracted from the MODIS Burned Area (BA) product to explore the relations between LFMC and forest/grassland fire occurrence across the subtropical highland zone (Cwa) and humid subtropical zone (Cwb) over southwest China. The statistical results of pre-fire LFMC and cumulative burned area show that distinct pre-fire LFMC critical thresholds were identified for Cwa (151.3%, 123.1%, and 51.4% for forest, and 138.1%, 72.8%, and 13.1% for grassland) and Cwb (115.0% and 54.4% for forest, and 137.5%, 69.0%, and 10.6% for grassland) zones. Below these thresholds, the fire occurrence and the burned area increased significantly. Additionally, a significant decreasing trend on LFMC dynamics was found during the days prior to two large fire events, Qiubei forest fire and Lantern Mountain grassland fire that broke during the 2009/2010 and 2015/2016 fire seasons, respectively. The minimum LFMC values reached prior to the fires (49.8% and 17.3%) were close to the lowest critical LFMC thresholds we reported for forest (51.4%) and grassland (13.1%). Further LFMC trend analysis revealed that the regional median LFMC dynamics for the 2009/2010 and 2015/2016 fire seasons were also significantly lower than the 10-year LFMC of the region. Hence, this study demonstrated that the LFMC dynamics explained wildfire occurrence in these fire-prone regions over southwest China, allowing the possibility to develop a new operational wildfire danger forecasting model over this area by considering the satellite-derived LFMC product.


Sign in / Sign up

Export Citation Format

Share Document