scholarly journals Sources of Fe-binding organic ligands in surface waters of the western Antarctic Peninsula

2020 ◽  
Author(s):  
Indah Ardiningsih ◽  
Kyyas Seyitmuhammedov ◽  
Sylvia G. Sander ◽  
Claudine H. Stirling ◽  
Gert-Jan Reichart ◽  
...  

Abstract. Organic ligands are a key factor determining the availability of dissolved iron (DFe) in the high nutrient low chlorophyll (HNLC) areas of the Southern Ocean. In this study, organic speciation of Fe is investigated along a natural gradient of the western Antarctic Peninsula, from an ice covered shelf to the open ocean. An electrochemical approach, competitive ligand exchange – adsorptive cathodic stripping voltammetry (CLE-AdCSV) was applied. Our results indicated that organic ligands in surface water on the shelf are associated with ice-algal exudates, possibly combined with melting of sea-ice. Organic ligands in deeper shelf water are supplied via resuspension of slope or shelf sediments. Further offshore, organic ligands are most likely related to the development of phytoplankton blooms in open ocean waters. On the shelf, total ligand concentrations ([Lt]) were between 1.2 nM eq. Fe and 6.4 nM eq. Fe. The organic ligands offshore ranged between 1.0 and 3.0 nM eq. Fe. The southern boundary of the Antarctic Circumpolar Current (SB ACC) separated the organic ligands on the shelf from bloom-associated ligands offshore. Overall, organic ligand concentrations always exceeded DFe concentration (excess ligand concentration, [L'] = 0.8–5.0 nM eq. Fe). The [L'] made up to 80 % of [Lt], suggesting that any additional Fe input can be stabilized in the dissolved form via organic complexation. The denser modified Circumpolar Deep Water (mCDW) on the shelf showed the highest complexation capacity of Fe (αFe'L; the product of [L'] and conditional binding strength of ligands, KFe'Lcond). Since Fe is also supplied by shelf sediments and glacial discharge, the high complexation capacity over the shelf can keep Fe dissolved and available for local primary productivity later in the season, upon sea ice melting.

2021 ◽  
Vol 18 (15) ◽  
pp. 4587-4601
Author(s):  
Indah Ardiningsih ◽  
Kyyas Seyitmuhammedov ◽  
Sylvia G. Sander ◽  
Claudine H. Stirling ◽  
Gert-Jan Reichart ◽  
...  

Abstract. Organic ligands are a key factor determining the availability of dissolved iron (DFe) in the high-nutrient low-chlorophyll (HNLC) areas of the Southern Ocean. In this study, organic speciation of Fe is investigated along a natural gradient of the western Antarctic Peninsula, from an ice-covered shelf to the open ocean. An electrochemical approach, competitive ligand exchange – adsorptive cathodic stripping voltammetry (CLE-AdCSV), was applied. Our results indicated that organic ligands in the surface water on the shelf are associated with ice-algal exudates, possibly combined with melting of sea ice. Organic ligands in the deeper shelf water are supplied via the resuspension of slope or shelf sediments. Further offshore, organic ligands are most likely related to the development of phytoplankton blooms in open ocean waters. On the shelf, total ligand concentrations ([Lt]) were between 1.2 and 6.4 nM eq. Fe. The organic ligands offshore ranged between 1.0 and 3.0 nM eq. Fe. The southern boundary of the Antarctic Circumpolar Current (SB ACC) separated the organic ligands on the shelf from bloom-associated ligands offshore. Overall, organic ligand concentrations always exceeded DFe concentrations (excess ligand concentration, [L′] = 0.8–5.0 nM eq. Fe). The [L′] made up to 80 % of [Lt], suggesting that any additional Fe input can be stabilized in the dissolved form via organic complexation. The denser modified Circumpolar Deep Water (mCDW) on the shelf showed the highest complexation capacity of Fe (αFe'L; the product of [L′] and conditional binding strength of ligands, KFe'Lcond). Since Fe is also supplied by shelf sediments and glacial discharge, the high complexation capacity over the shelf can keep Fe dissolved and available for local primary productivity later in the season upon sea-ice melting.


2021 ◽  
Author(s):  
Andrew Corso ◽  
Deborah Steinberg ◽  
Sharon Stammerjohn ◽  
Eric Hilton

Abstract Over the last half of the 20th century, the western Antarctic Peninsula has been one of the most rapidly warming regions on Earth, leading to substantial reductions in regional sea ice coverage. These changes are modulated by atmospheric forcing, including the Amundsen Sea Low (ASL) pressure system. We utilized a novel 25-year (1993–2017) time series to model the effects of environmental variability on larvae of a keystone species, the Antarctic Silverfish (Pleuragramma antarctica). Antarctic Silverfish use sea ice as spawning habitat and are important prey for penguins and other predators. We show that warmer sea surface temperature and decreased sea ice negatively impact larval abundance. Modulating both sea surface temperature and sea ice is ASL variability, where a strong ASL is associated with reduced larvae. These findings support a narrow sea ice and temperature tolerance for adult and larval fish. Further regional warming predicted to occur during the 21st century could displace fish populations, altering this pelagic ecosystem.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214814 ◽  
Author(s):  
Adrian Dahood ◽  
George M. Watters ◽  
Kim de Mutsert

2012 ◽  
Vol 33 (4) ◽  
pp. 852-861 ◽  
Author(s):  
John Turner ◽  
Ted Maksym ◽  
Tony Phillips ◽  
Gareth J. Marshall ◽  
Michael P. Meredith

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yajuan Lin ◽  
Carly Moreno ◽  
Adrian Marchetti ◽  
Hugh Ducklow ◽  
Oscar Schofield ◽  
...  

AbstractSince the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions.


Author(s):  
Hugh W. Ducklow ◽  
Michael R. Stukel ◽  
Rachel Eveleth ◽  
Scott C. Doney ◽  
Tim Jickells ◽  
...  

New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 – uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012–2014. Net seasonal-scale changes in water column inventories (0–150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways. This article is part of the theme issue ‘The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


2020 ◽  
Author(s):  
Maria-Elena Vorrath ◽  
Paola Cárdenas ◽  
Lorena Rebolledo ◽  
Xiaoxu Shi ◽  
Juliane Müller ◽  
...  

<p>Recent changes and variability in climate conditions leave a significant footprint on the distribution and properties of sea ice, as it is sensitive to environmental variations. We investigate the rapidly transforming region of the Western Antarctic Peninsula (WAP) focusing on the conditions and development of sea ice in the pre-satellite era. For this study on past sea ice cover we apply the novel proxy IPSO<sub>25</sub> (Ice Proxy for the Southern Ocean with 25 carbon atoms; Belt et al., 2016). Three sampling sites were selected to cover areas near the Antarctic mainland, in the Bransfield Basin (2000 m depth) and the deeper shelf under an oceanographic frontal system. Analysis of short cores (multicores) resolving the last 200 years (based on <sup>210</sup>Pb<sub>ex</sub> dating) focused on geochemical bulk parameters, biomarkers (highly branched isoprenoids, GDGTs, sterols) and diatoms. These results are compared to multiple climate archives and modelled data. This multiproxy based approach provides insights on changes in spring sea ice cover, primary production regimes, subsurface ocean temperature (SOT based on TEX<sup>L</sup><sub>86</sub>) and oceanographic as well as atmospheric circulation patterns. While environmental proxies preserved in two cores near the coast and in the Bransfield Basin reflect the properties of water masses from the Bellingshausen Sea and Weddell Sea, respectively, data from the third core at the deeper shelf depict mixed signals of both water masses. Our study reveals clear evidence for warm and cold periods matching with ice core records and other marine sediment data at the WAP. We observe a general decrease in SOT and an increase in sea ice cover overprinted by high decadal fluctuations. Trends in SOT seem to be decoupled from atmospheric temperatures in the 20<sup>th</sup> century, and this is supported by previous studies (e.g. Barbara et al., 2013), and may be related to the Southern Annual Mode. We consider numerical modelling of sea ice conditions, sea surface temperature and SOT for further support of our findings.</p><p> </p><p>References:</p><p>Barbara, L., Crosta, X., Schmidt, S. and Massé, G.: Diatoms and biomarkers evidence for major changes in sea ice conditions prior the instrumental period in Antarctic Peninsula, Quat. Sci. Rev., 79, 99–110, doi:10.1016/j.quascirev.2013.07.021, 2013.</p><p>Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I. and Taylor, K. W. R.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 1–10, doi:10.1038/ncomms12655, 2016.</p>


Sign in / Sign up

Export Citation Format

Share Document