scholarly journals Comments on "A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry and ocean acidification in the Gulf of Alaska" by Claudine Hauri et al.

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Claudine Hauri ◽  
Cristina Schultz ◽  
Katherine Hedstrom ◽  
Seth Danielson ◽  
Brita Irving ◽  
...  

Abstract. The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change that can only be understood within the context of the natural variability of physical and chemical conditions. Controlled by its complex bathymetry, iron enriched freshwater discharge, and wind and solar radiation, the GOA is a highly dynamic system that exhibits large inorganic carbon variability from subseasonal to interannual timescales. This variability is poorly understood due to the lack of observations in this expansive and remote region. To improve our conceptual understanding of the system, we developed a new model set-up for the GOA that couples the three-dimensional Regional Oceanic Model System (ROMS), the Carbon, Ocean Biogeochemistry and Lower Trophic (COBALT) ecosystem model, and a high resolution terrestrial hydrological model. Here, we evaluate the model on seasonal to interannual timescales using the best available inorganic carbon observations. The model was particularly successful in reproducing observed aragonite oversaturation and undersaturation of near-bottom water in May and September, respectively. The largest deficiency of the model is perhaps its inability to adequately simulate spring time surface inorganic carbon chemistry, as it overestimates surface dissolved inorganic carbon, which translates into an underestimation of the surface aragonite saturation state at this time. We also use the model to describe the seasonal cycle and drivers of inorganic carbon parameters along the Seward Line transect in under-sampled months. As such, model output suggests that a majority of the near-bottom water along the Seward Line is seasonally under-saturated with regard to aragonite between June and January, as a result of upwelling and remineralization. Such an extensive period of reoccurring aragonite undersaturation may be harmful to CO2 sensitive organisms. Furthermore, the influence of freshwater not only decreases aragonite saturation state in coastal surface waters in summer and fall, but simultaneously also decreases surface pCO2, thereby decoupling the aragonite saturation state from pCO2. The full seasonal cycle and geographic extent of the GOA region is undersampled, and our model results give new and important insights for months of the year and areas that lack in situ inorganic carbon observations.


2020 ◽  
Vol 17 (14) ◽  
pp. 3837-3857
Author(s):  
Claudine Hauri ◽  
Cristina Schultz ◽  
Katherine Hedstrom ◽  
Seth Danielson ◽  
Brita Irving ◽  
...  

Abstract. The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. Detection of these long-term trends requires a good understanding of the system’s natural state. The GOA is a highly dynamic system that exhibits large inorganic carbon variability on subseasonal to interannual timescales. This variability is poorly understood due to the lack of observations in this expansive and remote region. We developed a new model setup for the GOA that couples the three-dimensional Regional Oceanic Model System (ROMS) and the Carbon, Ocean Biogeochemistry and Lower Trophic (COBALT) ecosystem model. To improve our conceptual understanding of the system, we conducted a hindcast simulation from 1980 to 2013. The model was explicitly forced with temporally and spatially varying coastal freshwater discharges from a high-resolution terrestrial hydrological model, thereby affecting salinity, alkalinity, dissolved inorganic carbon, and nutrient concentrations. This represents a substantial improvement over previous GOA modeling attempts. Here, we evaluate the model on seasonal to interannual timescales using the best available inorganic carbon observations. The model was particularly successful in reproducing observed aragonite oversaturation and undersaturation of near-bottom water in May and September, respectively. The largest deficiency in the model is its inability to adequately simulate springtime surface inorganic carbon chemistry, as it overestimates surface dissolved inorganic carbon, which translates into an underestimation of the surface aragonite saturation state at this time. We also use the model to describe the seasonal cycle and drivers of inorganic carbon parameters along the Seward Line transect in under-sampled months. Model output suggests that the majority of the near-bottom water along the Seward Line is seasonally undersaturated with respect to aragonite between June and January, as a result of upwelling and remineralization. Such an extensive period of reoccurring aragonite undersaturation may be harmful to ocean acidification-sensitive organisms. Furthermore, the influence of freshwater not only decreases the aragonite saturation state in coastal surface waters in summer and fall, but it simultaneously decreases the surface partial pressure of carbon dioxide (pCO2), thereby decoupling the aragonite saturation state from pCO2. The full seasonal cycle and geographic extent of the GOA region is under-sampled, and our model results give new and important insights for months of the year and areas that lack in situ inorganic carbon observations.


2013 ◽  
Vol 6 (1) ◽  
pp. 1259-1365 ◽  
Author(s):  
A. Yool ◽  
E. E. Popova ◽  
T. R. Anderson

Abstract. MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically-driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. Since the beginning of the industrial era, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background concentration. Simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, therefore requires that both organic and inorganic carbon be afforded a full representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterisations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal hindcast simulation described (1860–2005), to evaluate the biogeochemical performance of the model.


2013 ◽  
Vol 6 (5) ◽  
pp. 1767-1811 ◽  
Author(s):  
A. Yool ◽  
E. E. Popova ◽  
T. R. Anderson

Abstract. MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. However, due to anthropogenic activity, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background. As such, simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, requires that both organic and inorganic carbon be afforded a more complete representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterizations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal spin-up simulation (1860–2005) is performed. The biogeochemical performance of the model is evaluated using a diverse range of observational data, and MEDUSA-2.0 is assessed relative to comparable models using output from the Coupled Model Intercomparison Project (CMIP5).


2018 ◽  
Author(s):  
Katja Fennel ◽  
Simone Alin ◽  
Leticia Barbero ◽  
Wiley Evans ◽  
Timotheé Bourgeois ◽  
...  

Abstract. A quantification of carbon fluxes in the coastal ocean and across its boundaries, specifically the air-sea, land-to-coastal-ocean and coastal-to-open-ocean interfaces, is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes with focus on the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying net air-sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air-sea CO2 flux, informed by more than a decade of observations, indicate that the North American margins act as a net sink for atmospheric CO2. This net uptake is driven primarily by the high-latitude regions. The estimated magnitude of the net flux is 160 ± 80 Tg C/y for the North American Exclusive Economic Zone, a number that is not well constrained. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result conditions favouring dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified and, in combination with the uptake of anthropogenic carbon, leads to low seawater pH and aragonite saturation states during the upwelling season. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.


2013 ◽  
Vol 10 (7) ◽  
pp. 4847-4859 ◽  
Author(s):  
A. Silyakova ◽  
R. G. J. Bellerby ◽  
K. G. Schulz ◽  
J. Czerny ◽  
T. Tanaka ◽  
...  

Abstract. Net community production (NCP) and carbon to nutrient uptake ratios were studied during a large-scale mesocosm experiment on ocean acidification in Kongsfjorden, western Svalbard, during June–July 2010. Nutrient depleted fjord water with natural plankton assemblages, enclosed in nine mesocosms of ~ 50 m3 in volume, was exposed to pCO2 levels ranging initially from 185 to 1420 μatm. NCP estimations are the cumulative change in dissolved inorganic carbon concentrations after accounting for gas exchange and total alkalinity variations. Stoichiometric coupling between inorganic carbon and nutrient net uptake is shown as a ratio of NCP to a cumulative change in inorganic nutrients. Phytoplankton growth was stimulated by nutrient addition half way through the experiment and three distinct peaks in chlorophyll a concentration were observed during the experiment. Accordingly, the experiment was divided in three phases. Cumulative NCP was similar in all mesocosms over the duration of the experiment. However, in phases I and II, NCP was higher and in phase III lower at elevated pCO2. Due to relatively low inorganic nutrient concentration in phase I, C : N and C : P uptake ratios were calculated only for the period after nutrient addition (phase II and phase III). For the total post-nutrient period (phase II + phase III) ratios were close to Redfield, however they were lower in phase II and higher in phase III. Variability of NCP, C : N and C : P uptake ratios in different phases reflects the effect of increasing CO2 on phytoplankton community composition and succession. The phytoplankton community was composed predominantly of haptophytes in phase I, prasinophytes, dinoflagellates, and cryptophytes in phase II, and haptophytes, prasinophytes, dinoflagellates and chlorophytes in phase III (Schulz et al., 2013). Increasing ambient inorganic carbon concentrations have also been shown to promote primary production and carbon assimilation. For this study, it is clear that the pelagic ecosystem response to increasing CO2 is more complex than that represented in previous work, e.g. Bellerby et al. (2008). Carbon and nutrient uptake representation in models should, where possible, be more focused on individual plankton functional types as applying a single stoichiometry to a biogeochemical model with regard to the effect of increasing pCO2 may not always be optimal. The phase variability in NCP and stoichiometry may be better understood if CO2 sensitivities of the plankton's functional type biogeochemical uptake kinetics and trophic interactions are better constrained.


2020 ◽  
Vol 71 (3) ◽  
pp. 281 ◽  
Author(s):  
J. M. Vance ◽  
K. I. Currie ◽  
C. S. Law ◽  
J. Murdoch ◽  
J. Zeldis

A national observing network has been operating over the past 4 years to inform the scientific and economic challenges of ocean acidification (OA) facing New Zealand. The New Zealand Ocean Acidification Observing Network (NZOA-ON) consists of 12 sites across varied coastal ecosystems. These ecosystems range from oligotrophic ocean-dominated systems to eutrophic river-dominated systems, with sites that are pristine or affected by agriculture and urbanisation. Fortnightly measurements of total alkalinity and dissolved inorganic carbon provide the baseline of carbonate chemistry in these varied ecosystems and will facilitate detection of future changes, as well as providing a present-day baseline. The National Institute of Water and Atmospheric Research and the University of Otago have developed a ‘grass-roots’ sampling program, providing training and equipment that enable sampling partners to collect field samples for analyses at a central laboratory. NZOA-ON leverages existing infrastructure and partnerships to maximise data captured for understanding the drivers of chemical changes associated with OA and ecological responses. NZOA-ON coordinates with and contributes to global initiatives to understand and mitigate the broader impacts of OA. A description of NZOA-ON is presented with preliminary analyses and comparison of data from different sites after the first 4 years of the network.


2020 ◽  
Vol 71 (3) ◽  
pp. 263 ◽  
Author(s):  
Catriona L. Hurd ◽  
John Beardall ◽  
Steeve Comeau ◽  
Christopher E. Cornwall ◽  
Jonathan N Havenhand ◽  
...  

‘Multiple drivers’ (also termed ‘multiple stressors’) is the term used to describe the cumulative effects of multiple environmental factors on organisms or ecosystems. Here, we consider ocean acidification as a multiple driver because many inorganic carbon parameters are changing simultaneously, including total dissolved inorganic carbon, CO2, HCO3–, CO32–, H+ and CaCO3 saturation state. With the rapid expansion of ocean acidification research has come a greater understanding of the complexity and intricacies of how these simultaneous changes to the seawater carbonate system are affecting marine life. We start by clarifying key terms used by chemists and biologists to describe the changing seawater inorganic carbon system. Then, using key groups of non-calcifying (fish, seaweeds, diatoms) and calcifying (coralline algae, coccolithophores, corals, molluscs) organisms, we consider how various physiological processes are affected by different components of the carbonate system.


Sign in / Sign up

Export Citation Format

Share Document