scholarly journals No evidence of a human influence on the mineralization of terrestrial dissolved organic matter (DOM) in Alpine fluvial networks

2021 ◽  
Author(s):  
Thibault Lambert ◽  
Pascal Perolo ◽  
Nicolas Escoffier ◽  
Marie-Elodie Perga

Abstract. The influence of human activities on the role of inland waters in the global carbon (C) cycle is poorly constrained. In this study, we investigated the impact of human land use on the degradation of terrestrial dissolved organic matter (DOM) and its potential impact on bacterial respiration in ten independent catchments of the Lake Geneva Basin. Sites were selected along a gradient of human disturbance (agriculture and urbanization), and we monitored bacterial respiration in parallel to DOM bioavailability. Fluorescence spectroscopy was used to determine the influence of human land uses on DOM sources and composition as well as the dynamic of degradation or production of the fluorophores identified in our study sites. Higher bacterial respiration measured in agro-urban streams related to a short-term bioreactive pool (0–6 days of incubation) from autochthonous origin, whose the size increased with human disturbance. On the other hand, the degradation of terrestrial DOM was not impacted by human activities and was not found to contribute substantially to aquatic bacterial respiration. Although human land uses controlled DOM sources, composition and bioavailability at the basin scale, our results showed that human activities in the Lake Geneva Basin had a limited impact on the net C exchanges between inland waters and the atmosphere related to DOM mineralization. Considering that greater proportion of autochthonous-DOM signature is a common feature in human-impacted catchments, the implications of our results likely apply more widely. Yet, on a global scale, the influence of human activities remains to be determine given the large diversity of effects of agriculture and urbanization on freshwater DOM depending on the local environmental context.

2022 ◽  
Vol 19 (1) ◽  
pp. 187-200
Author(s):  
Thibault Lambert ◽  
Pascal Perolo ◽  
Nicolas Escoffier ◽  
Marie-Elodie Perga

Abstract. The influence of human activities on the role of inland waters in the global carbon (C) cycle is poorly constrained. In this study, we investigated the impact of human land use on the sources and biodegradation of dissolved organic matter (DOM) and its potential impact on bacterial respiration in 10 independent catchments of the Lake Geneva basin. Sites were selected along a gradient of human disturbance (agriculture and urbanization) and were visited twice during the winter high-flow period. Bacterial respiration and DOM bioavailability were measured in the laboratory through standardized dark bioassays, and the influence of human land uses on DOM sources, composition and reactivity was assessed from fluorescence spectroscopy. Bacterial respiration was higher in agro-urban streams but was related to a short-term bioreactive pool (0–6 d of incubation) of autochthonous origin, whose relative contribution to the total DOM pool increased with the degree of human disturbance. On the other hand, the degradation of a long-term (6–28 d) bioreactive pool related to terrestrial DOM was independent from the catchment land use and did not contribute substantially to aquatic bacterial respiration. From a greenhouse gas emission perspective, our results suggest that human activities may have a limited impact on the net C exchanges between inland waters and the atmosphere, as most CO2 fixed by aquatic producers in agro-urban streams is cycled back to the atmosphere after biomineralization. Although seasonal and longitudinal changes in DOM sources must be considered, the implications of our results likely apply more widely as a greater proportion of autochthonous-DOM signature is a common feature in human-impacted catchments. Yet, on a global scale, the influence of human activities remains to be determined given the large diversity of effects of agriculture and urbanization on freshwater DOM depending on the local environmental context.


2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


2016 ◽  
Vol 543 ◽  
pp. 405-415 ◽  
Author(s):  
Yongqiang Zhou ◽  
Jian Zhou ◽  
Erik Jeppesen ◽  
Yunlin Zhang ◽  
Boqiang Qin ◽  
...  

2020 ◽  
Author(s):  
Angelica Bianco ◽  
Fabrizio Sordello ◽  
Mikael Ehn ◽  
Davide Vione ◽  
Monica Passananti

<p>The large production of plastic material (PlasticsEurope, 2019), together with the mishandling of plastic waste, has resulted in ubiquitous plastic pollution, which now reaches even the most remote areas of the Earth (Allen et al., 2019; Bergmann et al., 2019). Plastics undergo a slow process of erosion in the environment that decreases their size: microplastics (MPs) and nanoplastics (NPs) have diameters between 1 µm and 5 mm and lower than 1 µm, respectively (Frias and Nash, 2019).</p><p>The occurrence, transformation and fate of MPs and NPs in the environment are still unclear. Therefore, the objective of this work is to better understand the reactivity of NPs using an aqueous suspension of polystyrene NPs (PS-NPs) as a proxy, in the presence of sunlight and chemicals oxidants. The results obtained are relevant to both the atmospheric aqueous phase, such as cloud and fog droplets, and surface waters. We investigated the reactivity of PS-NPs with light and with two important oxidants in the environment: ozone (O<sub>3</sub>) and hydroxyl radicals (<sup>•</sup>OH). The adsorption of ozone (O<sub>3</sub>) on PS-NPs is investigated, showing a significant O<sub>3</sub> uptake. Moreover, for the first time, a reactivity constant with <sup>•</sup>OH is determined. We found a linear correlation between the kinetic constants measured for three different sizes of PS-NPs and the surface exposed by the particles. Degradation products (short chain carboxylic acids and aromatic compounds), obtained by direct and <sup>•</sup>OH-mediated photolysis of PS-NPs suspensions, are identified by high-resolution mass spectrometry. Irradiation of a PS-NPs suspension under natural sunlight for 1 year has shown the formation of formic acid and organic compounds similar to those found in riverine and cloud dissolved organic matter.</p><p>This work is crucial to assess the impact of NPs abiotic degradation in atmospheric and surface waters; indeed, the reactivity constant and the degradation products can be implemented in environmental models to estimate the contribution of NPs degradation to the natural dissolved organic matter in the aqueous phase. A preliminary simulation using APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics) (Bodrato and Vione, 2014) model shows that in NPs-polluted environments (10<sup>9</sup> particles mL<sup>-1</sup>) there is potential for NPs to significantly scavenge <sup>•</sup>OH, if the content of natural organic matter is not too high, as observed for surface and cloud water.</p><p>Allen, S., et al., 2019.  Nat. Geosci. 12, 339–344. https://doi.org/10.1038/s41561-019-0335-5<br>Bergmann, et al., 2019.  Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157<br>Bodrato, M., Vione, D., 2014. Environ. Sci.: Processes Impacts 16, 732–740. https://doi.org/10.1039/C3EM00541K<br>Frias, J., Nash, R., 2019. Mar. Pollut. Bull. 138, 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022</p>


Sign in / Sign up

Export Citation Format

Share Document