scholarly journals SMOS L-VOD shows that post-fire recovery of dense forests is slower than what is depicted with X- and C-VOD and optical indices

2021 ◽  
Author(s):  
Emma Bousquet ◽  
Arnaud Mialon ◽  
Nemesio Rodriguez-Fernandez ◽  
Stéphane Mermoz ◽  
Yann Henry Kerr

Abstract. Anthropogenic climate change is now considered to be one of the main factors causing an increase in both frequency and severity of wildfires. These fires are prone to release substantial quantities of CO2 in the atmosphere and to destroy natural ecosystems while reducing biodiversity. Depending on the ecosystem and climate regime, fires have distinct triggering factors and impacts. To better analyse and describe fire impact on different biomes, we investigated pre and post fire vegetation anomalies at global scale. The study was performed using several remotely sensed quantities ranging from optical vegetation indices (the enhanced vegetation index (EVI)) to vegetation opacities obtained at several microwave wavelengths (X-band, C-band, and L-band vegetation optical depth (X-VOD, C-VOD, and L-VOD)), ranging from 2 to 20 cm. It was found that C- and X-VOD are mostly sensitive to fire over low vegetation areas (grass and small bushes) or over tree leaves; while L-VOD depicts better the fire impact on tree trunks and branches. As a consequence, L-VOD is probably a better way of assessing fire impact on biomass. The study shows that L-VOD can be used to monitor fire affected areas as well as post-fire recovery, especially over densely vegetated areas.

2011 ◽  
Vol 4 (4) ◽  
pp. 1103-1114 ◽  
Author(s):  
F. Maignan ◽  
F.-M. Bréon ◽  
F. Chevallier ◽  
N. Viovy ◽  
P. Ciais ◽  
...  

Abstract. Atmospheric CO2 drives most of the greenhouse effect increase. One major uncertainty on the future rate of increase of CO2 in the atmosphere is the impact of the anticipated climate change on the vegetation. Dynamic Global Vegetation Models (DGVM) are used to address this question. ORCHIDEE is such a DGVM that has proven useful for climate change studies. However, there is no objective and methodological way to accurately assess each new available version on the global scale. In this paper, we submit a methodological evaluation of ORCHIDEE by correlating satellite-derived Vegetation Index time series against those of the modeled Fraction of absorbed Photosynthetically Active Radiation (FPAR). A perfect correlation between the two is not expected, however an improvement of the model should lead to an increase of the overall performance. We detail two case studies in which model improvements are demonstrated, using our methodology. In the first one, a new phenology version in ORCHIDEE is shown to bring a significant impact on the simulated annual cycles, in particular for C3 Grasses and C3 Crops. In the second case study, we compare the simulations when using two different weather fields to drive ORCHIDEE. The ERA-Interim forcing leads to a better description of the FPAR interannual anomalies than the simulation forced by a mixed CRU-NCEP dataset. This work shows that long time series of satellite observations, despite their uncertainties, can identify weaknesses in global vegetation models, a necessary first step to improving them.


2018 ◽  
Vol 2017 (2) ◽  
Author(s):  
Rika Hernawati ◽  
Agung Budi Harto ◽  
Dewi Kania Sari

ABSTRAKPemantauan dan prakiraan hasil tanam padi sawah penting untuk dilakukan antara lain dalam rangka menjaga ketahanan pangan nasional. Saat ini, pemantauan pertumbuhan tanaman padi sawah dapat dilakukan dengan mengaplikasikan teknologi pengindraan jauh, antara lain dengan mendeteksi fenologi tanaman padi sawah yang terekam pada setiap piksel citra yang selanjutnya dapat digunakan untuk pemetaan pola tanam dan kalender tanam padi sawah. Penelitian ini bertujuan untuk mengembangkan algoritma deteksi fenologi padi sawah dengan menggunakan indeks vegetasi Enhanced Vegetation Index (EVI) dan Land Surface Water Index (LSWI) berkala yang diturunkan dari data citra MODIS, dengan menerapkan proses penapisan Gaussian. Penerapan teknik penapisan Gaussian pada data indeks vegetasi tersebut diharapkan dapat meminimalisasi derau, sehingga akan meningkatkan ketelitian hasil pendeteksian fenologi tanaman padi sawah. Wilayah studi mencakup 3 Kabupaten di Provinsi Jawa Barat bagian utara, yaitu Kabupaten Subang, Kabupaten Karawang, dan Kabupaten Bekasi. Hasil penelitian menunjukkan bahwa penerapan penapisan Gaussian pada metode deteksi fenologi padi sawah berbasis indeks vegetasi EVI dan LSWI berkala telah dapat meningkatkan ketelitian hasil deteksi tanggal-tanggal fenologis padi sawah. Keakuratan hasil estimasi luas tanam dan luas panen padi sawah divalidasi menggunakan data statistik dari Dinas Pertanian Kabupaten.Kata Kunci: deteksi fenologi, EVI, LSWI, penapisan GaussianABSTRACTMonitoring and forecasting yields of paddy rice are important to do, in order to maintain national food security. The current paddy crop growth monitoring can be done by applying remote sensing technology by detecting paddy phenology to produce the date of planting and harvest dates, which were recorded at each pixel of the digital image of rice field and can then be used for cropping pattern and planting calendar mapping. This research aims to develop a detection algorithm phenology paddy using vegetation indices Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) periodic image data derived from MODIS, by applying a Gaussian filtering process. The application of Gaussian filtering techniques to the data of vegetation indeces, EVI and LSWI, are expected to minimize the noise, thereby increasing the precision of detection of paddy rice crop phenology. The study area covers three districts in the northern part of West Java Province, i.e. Subang, Karawang and Bekasi. The results showed that the application of Gaussian filtering on the detection method of paddy rice phenology based on multitemporal vegetation indices EVI and LSWI can improve the precision of the detection of paddy phenological dates. The accuracy of the estimation results of the planting and harvested area of paddy were validated using statistical data from the District Agricultural Office.Keywords: phenology detection, EVI, LSWI, Gaussian filtering


2021 ◽  
Vol 13 (17) ◽  
pp. 3374
Author(s):  
Xin Chen ◽  
Tiexi Chen ◽  
Qingyun Yan ◽  
Jiangtao Cai ◽  
Renjie Guo ◽  
...  

Vegetation greening, which refers to the interannual increasing trends of vegetation greenness, has been widely found on the regional to global scale. Meanwhile, climate extremes, especially several drought, significantly damage vegetation. The Southwest China (SWC) region experienced massive drought from 2009 to 2012, which severely damaged vegetation and had a huge impact on agricultural systems and life. However, whether these extremes have significantly influenced long-term (multiple decades) vegetation change is unclear. Using the latest remote sensing-based records, including leaf area index (LAI) and gross primary productivity (GPP) for 1982–2016 and enhanced vegetation index (EVI) for 2001–2019, drought events of 2009–2012 only leveled off the greening (increasing in vegetation indices and GPP) temporally and long-term greening was maintained. Meanwhile, drying trends were found to unexpectedly coexist with greening.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Mazlan Hashim ◽  
Sharifeh Hazini

Separation of different vegetation types in satellite images is a critical issue in remote sensing. This is because of the close reflectance between different vegetation types that it makes difficult segregation of them in satellite images. In this study, to facilitate this problem, different satellite derived vegetation indices including: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Enhanced Vegetation Index 2 (EVI2) were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat-5 TM data. The obtained NDVI, EVI, and EVI2 images were then analyzed and interpreted in order to evaluate their effectiveness to discriminate rice and citrus fields from ASTER and Landsat data. In doing so, the Density Slicing (DS) classification technique followed by the trial and error method was implemented. The results indicated that the accuracies of ASTER NDVI and ASTER EVI2 for citrus mapping are about 75% and 65%, while the accuracies of Landsat NDVI and Landsat EVI for rice mapping are about 60% and 65%, respectively. The achieved results demonstrated higher performance of ASTER NDVI for citrus mapping and Landsat EVI for rice mapping. The study concluded that it is difficult to detect and map rice fields from satellite images using satellite-derived indices with high accuracy. However, the citrus fields can be mapped with the higher accuracy using satellite-derived indices.


2020 ◽  
Vol 12 (2) ◽  
pp. 211 ◽  
Author(s):  
Pablo Martín-Ortega ◽  
Luis Gonzaga García-Montero ◽  
Nicole Sibelet

Vegetation indices (VI) describe vegetation structure and functioning but they are affected by illumination conditions (IC). Moreover, the fact that the effect of the IC on VI can be stronger than other biophysical or seasonal processes is under debate. Using Google Earth Engine and the latest Landsat Surface Reflectance level 1 data, we evaluated the temporal patterns of IC and two VI, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) in a mountainous tropical forest during the years 1984–2017. We evaluated IC and VI at different times, their relationship with the topography and the correlations between them. We show that IC is useful for understanding the patterns of variation between VI and IC at the pixel level using Landsat sensors. Our findings confirmed a strong correlation between EVI and IC and less between NDVI and IC. We found a significant increase in IC, EVI, and NDVI throughout time due to an improvement in the position of all Landsat sensors. Our results reinforce the need to consider IC to interpret VI over long periods using Landsat data in order to increase the precision of monitoring VI in irregular topography.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoxuan Liu ◽  
Juepeng Zheng ◽  
Le Yu ◽  
Pengyu Hao ◽  
Bin Chen ◽  
...  

AbstractThe cropping intensity has received growing concern in the agriculture field in applications such as harvest area research. Notwithstanding the significant amount of existing literature on local cropping intensities, research considering global datasets appears to be limited in spatial resolution and precision. In this paper, we present an annual dynamic global cropping intensity dataset covering the period from 2001 to 2019 at a 250-m resolution with an average overall accuracy of 89%, exceeding the accuracy of the current annual dynamic global cropping intensity data at a 500-m resolution. We used the enhanced vegetation index (EVI) of MOD13Q1 as the database via a sixth-order polynomial function to calculate the cropping intensity. The global cropping intensity dataset was packaged in the GeoTIFF file type, with the quality control band in the same format. The dataset fills the vacancy of medium-resolution, global-scale annual cropping intensity data and provides an improved map for further global yield estimations and food security analyses.


Author(s):  
Paul Macarof ◽  
Stefan Groza ◽  
Florian Statescu

Abstract In this paper is investigating correlation between land surface temperature and vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index 2 - EVI2 and Modified Soil Adjusted Vegetation Index - MSAVI) using Landsat images for august, the warmest month, for study area. Iaşi county is considered as study area in this research. Study Area is geographically situated on latitude 46°48'N to 47°35'N and longitude 26°29'E to 28°07'E. Land surface temperature (LST) can be used to define the temperature distribution at local, regional and global scale. First use of LST was in climate change models. Also LST is use to define the problems associated with the environment. A Vegetation Indices (VI) is a spectral transformation what suppose spatial-temporal intercomparisons of terrestrial photosynthetic dynamics and canopy structural variations. Landsat5 TM, Landsat7 ETM+ and Landsat8 OLI, all data were used in this study for modeling. Landsat images was taken for august 1994, 2006 and 2016. Preprocessing of Landsat 5/7/8 data stage represent that process that prepare images for subsequent analysis that attempts to compensate/correct for systematic errors. It was observed that the “mean” parameter for LST increased from 1994 to 2016 at approximately 5°C. Analyzing the data from VI, it can be assumed that the built-up area increased for the Iasi county, while the area occupied by dense vegetation has decreased. Many researches indicated that between LST and VI is a linear relationship. It is noted that the R2 values for the LST-VI correlations decrease from 1994 (i.g.R2= 0.72 for LST-NDVI) in 2016 (i.g.R2= 0.23 for LST-NDVI). In conclusion, these correlation can be used to study vegetation health, drought damage, and areas where Urban Heat Island can occur.


2021 ◽  
Vol 13 (6) ◽  
pp. 1130
Author(s):  
Jonathan León-Tavares ◽  
Jean-Louis Roujean ◽  
Bruno Smets ◽  
Erwin Wolters ◽  
Carolien Toté ◽  
...  

Land surface reflectance measurements from the VEGETATION program (SPOT-4, SPOT-5 and PROBA-V satellites) have led to the acquisition of consistent time-series of Normalized Difference Vegetation Index (NDVI) at a global scale. The wide imaging swath (>2000 km) of the family of VEGETATION space-borne sensors ensures a daily coverage of the Earth at the expense of a varying observation and illumination geometries between successive orbit overpasses for a given target located on the ground. Such angular variations infer saw-like patterns on time-series of reflectance and NDVI. The presence of directional effects is not a real issue provided that they can be properly removed, which supposes an appropriate BRDF (Bidirectional Reflectance Distribution Function) sampling as offered by the VEGETATION program. An anisotropy correction supports a better analysis of the temporal shapes and spatial patterns of land surface reflectance values and vegetation indices such as NDVI. Herein we describe a BRDF correction methodology, for the purpose of the Copernicus Global Land Service framework, which includes notably an adaptive data accumulation window and provides uncertainties associated with the NDVI computed with normalized reflectance. Assessing the general performance of the methodology in comparing time-series between normalized and directional NDVI reveals a significant removal of the high-frequency noise due to directional effects. The proposed methodology is computationally efficient to operate at a global scale to deliver a BRDF-corrected NDVI product based on long-term Time-Series of VEGETATION sensor and its follow-on with the Copernicus Sentinel-3 satellite constellation.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


Sign in / Sign up

Export Citation Format

Share Document