scholarly journals Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

2012 ◽  
Vol 9 (11) ◽  
pp. 4773-4785 ◽  
Author(s):  
F. Lidman ◽  
C. M. Mörth ◽  
H. Laudon

Abstract. The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2) up to a fourth-order stream (67 km2). Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon), Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was found to be low compared to weathering.

2012 ◽  
Vol 9 (3) ◽  
pp. 2823-2849 ◽  
Author(s):  
F. Lidman ◽  
C. M. Mörth ◽  
H. Laudon

Abstract. The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The export of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, but could not explain the variability in the export. Instead, the extent of lakes and mires within each subcatchment was found to be a stronger predictor for the transport of uranium and thorium. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal mires. Approximately 65–80 % of uranium and 55–65 % of thorium entering a mire is estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands is estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40 %. The atmospheric deposition of uranium and thorium was also quantified and its contribution to boreal streams was found to be low compared to weathering.


1965 ◽  
Vol 43 (3) ◽  
pp. 393-404 ◽  
Author(s):  
J. Terasmae ◽  
R. J. Mott

Modern pollen content has been examined in 10 surface samples from the Nichicun Lake area, southwest of Schefferville, Quebec, and from three other localities in the same region. The pollen assemblages obtained reflect with fair reliability the regional characteristics of the northern boreal forest. Long-distance wind transport over several hundred miles is indicated by the presence of occasional ragweed and hardwood pollen grains from south of the boreal forest region. A morphological study of the black spruce pollen found indicates a rather wide range of variability, greater than that found in the pollen of black spruce south of this region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geert Hensgens ◽  
Hjalmar Laudon ◽  
Mark S. Johnson ◽  
Martin Berggren

AbstractThe boreal forest is among the largest terrestrial biomes on earth, storing more carbon (C) than the atmosphere. Due to rapid climatic warming and enhanced human development, the boreal region may have begun transitioning from a net C sink to a net source. This raises serious concern that old biogenic soil C can be re-introduced into the modern C cycle in near future. Combining bio-decay experiments, mixing models and the Keeling plot method, we discovered a distinct old pre-bomb organic carbon fraction with high biodegradation rate. In total, 34 ± 12% of water-extractable organic carbon (WEOC) in podzols, one of the dominating boreal soil types, consisted of aged (~ 1000 year) labile C. The omission of this aged (i.e., Δ14C depleted) WEOC fraction in earlier studies is due to the co-occurrence with Δ14C enriched modern C formed following 1950s nuclear bomb testing masking its existence. High lability of aged soil WEOC and masking effects of modern Δ14C enriched C suggests that the risk for mobilization and re-introduction of this ancient C pool into the modern C cycle has gone undetected. Our findings have important implications for earth systems models in terms of climate-carbon feedbacks and the future C balance of the boreal forest.


Author(s):  
Alex Noel ◽  
Jules Comeau ◽  
Salah-Eddine El Adlouni ◽  
Gaetan Pelletier ◽  
Marie-Andrée Giroux

The recruitment of saplings in forest stands into merchantable stems is a very complex process, thus making it challenging to understand and predict. The recruitment dynamics in the Acadian Forest Region of New Brunswick are not well known or documented. Our objective was to draw an inference from existing large scale routine forest inventories as to the different dynamics behind the recruitment from the sapling layer into the commercial tree size layer in terms of density and occurrence of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) following harvesting, by looking at many factors on a wide range of spatial and temporal scales using models. Results suggest that the variation in density and probability of occurrence is best explained by the intensity of silvicultural treatment, by the merchantable stem density in each plot, and by the proportion of merchantable basal area of each group of species. The number of recruits of sugar maple and yellow birch stems tend be higher when time since last treatment increases, when mid to low levels of silvicultural treatment intensity were implemented, and within plots having intermediate levels of merchantable stem density. Lastly, our modeling efforts suggest that the probability of occurrence and density of recruitment of both species tend to increase while its share of merchantable basal area increases.


JYX ◽  
2021 ◽  
Author(s):  
Mikko Mönkkönen ◽  
Eric Le Tortorec ◽  
Adriano Mazziotta ◽  
Artti Juutinen ◽  
María Triviño ◽  
...  

2021 ◽  
Author(s):  
Heide Stein ◽  
Hans Jürgen Hahn

<p>In this study, the temporal variability of the hydrological exchange between stream water (SW) and groundwater (GW), colmation, hyporheic invertebrate fauna, organic matter (OM) and physicochemical parameters were examined for the period of one year. Sampling and measuring were conducted monthly from May 2019 to April 2020 at the Guldenbach river, a second order stream in Rhineland-Palatinate, Germany. All hyporheic samples were extracted from a depth of 15 cm below stream bottom. Colmation was measured quantitatively in the same depth.</p><p>Following the biotic and abiotic patterns found, three temporal stages of different hydrological conditions can be described:</p><ul><li>1) Strong floods, in February and March 2020 caused hydromorphological alterations of the river bed, leading to a decolmation of the hyporheic zone, a wash out of OM and hyporheic fauna. Due to high GW tables the vertical hydrological gradient (VHG) was positive indicating upwelling GW.</li> <li>2) In the months of Mai to August 2019 and April 2020, precipitation and stream discharge were lowest. Predominantly exfiltrating conditions were observed, while the amount of fine sediments (clay and silt) increased as well as colmation. High densities of hyporheic fauna, dominated by fine sediment dwelling taxa, were assessed.</li> <li>3) From September 2019 to January 2020 stream discharge was low. The VHG became increasingly negative, indicating downwelling SW. In accordance, colmation increased continuously, while densities of hyporheic invertebrates decreased and sediment dwellers became more dominant.</li> </ul><p>Precipitation, discharge events and GW table were found to be the driving factors for the annual dynamics of the hydrological exchange as well as for colmation, fauna and hydrochemistry. Electric conductivity seems a suitable indicator for the origin of water with high values in months of low precipitation and lower values after extensive precipitation events, respectively. Hyporheic fauna displayed a significant seasonality and the community structure was correlated with colmation and changes in the VHG.</p><p>This pronounced seasonality seems to be typical of many streams and should be considered for the monitoring of sediments and hyporheic habitats: Seasons with lower stream discharge are probably the most critical periods for sediment conditions.</p><p>We assume that the basic patterns of the dynamics observed basically reflect the natural situation in the catchment. However, the strength of surface run-off and the amount of fine sediments are mainly the result of anthropogenic activities and land use in the catchment.</p><p>These findings underline the significance of dynamical processes for the assessment and implementation of the Water Framework Directive.</p>


2016 ◽  
Vol 67 (1) ◽  
pp. 153 ◽  
Author(s):  
Doriane Stagnol ◽  
Renaud Michel ◽  
Dominique Davoult

Canopy-forming macroalgae create a specific surrounding habitat (the matrix) with their own ecological properties. Previous studies have shown a wide range of responses to canopy removal. Magnitude and strength of the effects of harvesting are thought to be context-dependent, with the macroalgal matrix that can either soften or exacerbate the impact of harvesting. We experimentally examined in situ the effect of harvesting on targeted commercial species, and how these potential impacts might vary in relation to its associated matrix. We found that patterns of recovery following the harvesting disturbance were variable and matrix specific, suggesting that local factors and surrounding habitat characteristics mediated the influence of harvesting. The greatest and longest effects of harvesting were observed for the targeted species that created a dominant and monospecific canopy on their site prior to the disturbance. Another relevant finding was the important natural spatiotemporal variability of macrobenthic assemblages associated with canopy-forming species, which raises concern about the ability to discriminate the natural variability from the disturbance impact. Finally, our results support the need to implement ecosystem-based management, assessing both the habitat conditions and ecological roles of targeted commercial species, in order to insure the sustainability of the resource.


1978 ◽  
Vol 56 (19) ◽  
pp. 2344-2347 ◽  
Author(s):  
D. Malloch ◽  
C. T. Rogerson

A new genus and species of ascomycetes, Catulus aquilonius, is described, illustrated, and tentatively assigned to the Mycosphaerellaceae. It grows as a parasite on stromata of Seuratia millardetii (Raciborski) Meeker and is characterized by two-celled, setulose ascospores.


Sign in / Sign up

Export Citation Format

Share Document