scholarly journals Corrigendum to "Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest" published in Biogeosciences, 9, 13–28, 2012

2012 ◽  
Vol 9 (2) ◽  
pp. 715-715
Author(s):  
J. Wu ◽  
L. van der Linden ◽  
G. Lasslop ◽  
N. Carvalhais ◽  
K. Pilegaard ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 13-28 ◽  
Author(s):  
J. Wu ◽  
L. van der Linden ◽  
G. Lasslop ◽  
N. Carvalhais ◽  
K. Pilegaard ◽  
...  

Abstract. The net ecosystem exchange of CO2 (NEE) between the atmosphere and a temperate beech forest showed a significant interannual variation (IAV) and a decadal trend of increasing carbon uptake (Pilegaard et al., 2011). The objectives of this study were to evaluate to what extent and at which temporal scale, direct climatic variability and changes in ecosystem functional properties regulated the IAV of the carbon balance at this site. Correlation analysis showed that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. Ecosystem response anomalies implied that changes in the distribution of climate anomalies during the vegetation period will have stronger impacts on future ecosystem carbon balances than changes in average climate. We improved a published modelling approach which distinguishes the direct climatic effects from changes in ecosystem functioning (Richardson et al., 2007) by employing the semi empirical model published by Lasslop et al. (2010b). Fitting the model in short moving windows enabled large flexibility to adjust the parameters to the seasonal course of the ecosystem functional state. At the annual time scale as much as 80% of the IAV in NEE was attributed to the variation in photosynthesis and respiration related model parameters. Our results suggest that the observed decadal NEE trend at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the importance of understanding the mechanisms of ecosystem functional change. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections.


2011 ◽  
Vol 8 (5) ◽  
pp. 9125-9163 ◽  
Author(s):  
J. Wu ◽  
L. van der Linden ◽  
G. Lasslop ◽  
N. Carvalhais ◽  
K. Pilegaard ◽  
...  

Abstract. The net ecosystem exchange of CO2 (NEE) between the atmosphere and a beech forest (Sorø, Denmark) showed significant interannual variation (IAV) over 13 years (1997–2009) of observations. The forest sequestered, on average, 157 g C m−2 yr−1, ranging from a source of 32 to a sink of 344 g C m−2 yr−1 in 1998 and 2008, respectively. The objectives of this study were to evaluate to what extent and at which temporal scale, climatic variability (through direct response) and changes in ecosystem functional properties (through biotic response) regulated the IAV in the ecosystem carbon balance. To address this question, we performed correlation analysis between the carbon fluxes and climate variables at different time scales. The response of CO2 exchange to climatic variability was significantly higher at short time scales and the limiting factors changed intra-annually. Combinations of climate anomalies in different periods of the year either intensified or attenuated the aggregated ecosystem responses, implying that the changing distribution of climate anomalies, in addition to the average climate change, could have stronger impacts on the ecosystem carbon balance in the future. A semi empirical model was used to estimate a set of parameter time series for each of the 13 years, which was considered to represent the functional properties of the ecosystem. The climate and parameter time series were applied factorially by year to quantify their relative importance for the IAV in carbon flux. At an annual time scale, as much as 77 % of the IAV in NEE could be attributed to the variation in both photosynthesis and respiration related model parameters, indicating a strong influence of functional change. The possible causes for the observed functional change could not be addressed with the available dataset. This demonstrates the need for more targeted experiments, such as long-term measurements of leaf nitrogen content. Our approach incorporated seasonal variation in the ecosystem status and demonstrated a significant role of biotic factors on the carbon dynamics in a typical temperate deciduous forest. The method can be applied at other sites to explore ecosystem behaviour across different plant functional types and climate gradients. Further, this approach showed how important it is to incorporate functional change in process based models, which could guide model development and consequently reduce the uncertainties in long-term projection of global ecosystem carbon balance.


2019 ◽  
Vol 223 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
Ryan Helcoski ◽  
Alan J. Tepley ◽  
Neil Pederson ◽  
Jennifer C. McGarvey ◽  
Victoria Meakem ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


Sign in / Sign up

Export Citation Format

Share Document