scholarly journals C, N and P stoichiometric mismatch between resources and consumers influence the dynamics of a marine microbial food web model and its response to atmospheric N and P inputs

2014 ◽  
Vol 11 (2) ◽  
pp. 2933-2971 ◽  
Author(s):  
P. Pondaven ◽  
P. Pivière ◽  
C. Ridame ◽  
C. Guien

Abstract. Results from the DUNE experiments reported in this issue have shown that nutrient input from dust deposition in large mesocosms deployed in the western Mediterranean induced a response of the microbial food web, with an increase of primary production rates (PP), bacterial respiration rates (BR), as well as autotrophic and heterotrophic biomasses. Additionally, it was found that nutrient inputs strengthened the net heterotrophy of the system, with NPP : BR ratios < 1. In this study we used a simple microbial food web model, inspired from previous modelling studies, to explore how C, N and P stoichiometric mismatch between producers and consumers along the food chain can influence the dynamics and the trophic status of the ecosystem. Attention was paid to the mechanisms involved in the balance between net autotrophy vs. net heterotrophy. Although the model was kept simple, predicted changes in biomass and PP were qualitatively consistent with observations from DUNE experiments. Additionally, the model shed light on how ecological stoichiometric mismatch between producers and consumers can control food web dynamics and drive the system toward net heterotrophy. In the model, net heterotrophy was notably driven by the parameterisation of the production and excretion of extra DOC from phytoplankton under nutrient-limited conditions. This mechanism yielded to high C : P and C : N ratios of the DOM pool, and subsequent postabsorptive respiration of C by bacteria. The model also predicted that nutrient inputs from dust strengthened the net heterotrophy of the system; a pattern also observed during two of the three DUNE experiments (P and Q). However, the model was not able to account for the low NPP : BR ratios (down to 0.1) recorded during the DUNE experiments. Possible mechanisms involved in this discrepancy were discussed.

2014 ◽  
Vol 11 (19) ◽  
pp. 5607-5619 ◽  
Author(s):  
E. Pulido-Villena ◽  
A.-C. Baudoux ◽  
I. Obernosterer ◽  
M. Landa ◽  
J. Caparros ◽  
...  

Abstract. The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms, but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus:bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.


2014 ◽  
Vol 11 (1) ◽  
pp. 337-371 ◽  
Author(s):  
E. Pulido-Villena ◽  
A.-C. Baudoux ◽  
I. Obernosterer ◽  
M. Landa ◽  
J. Caparros ◽  
...  

Abstract. The significant impact of dust deposition on heterotrophic bacterial dynamics in the surface oligotrophic ocean has recently been evidenced. Considering the central role of bacteria in the microbial loop, it is likely that dust deposition also affects the structure and the functioning of the whole microbial food web. In the frame of the DUNE project, aiming to estimate the impact of dust deposition on the oligotrophic Mediterranean Sea through mesocosm experiments, the main goal of the present paper was to assess how two successive dust deposition events affect the dynamics of the microbial food web. The first dust seeding delivered new P and N to the amended mesocosms and resulted in a pronounced stimulation of bacterial respiration. It also induced pronounced, but transient, changes in the bacterial community composition. No significant effects were observed on the abundances of viruses and heterotrophic nanoflagellates. The second dust seeding also delivered new P and N to the amended mesocosms but the effect on the microbial food web was very different. Bacterial respiration remained constant and bacterial abundance decreased. Compositional changes following the second seeding were minor compared to the first one. The decrease in bacterial abundance coincided with an increase in virus abundance, resulting in higher virus: bacteria ratios throughout the second seeding period. Our study shows that dust deposition to the surface oligotrophic ocean may involve important modifications of the trophic links among the components of the microbial food web with presumed consequences on C and nutrient cycling.


2021 ◽  
Vol 9 (2) ◽  
pp. 317
Author(s):  
Dolors Vaqué ◽  
Julia A. Boras ◽  
Jesús Maria Arrieta ◽  
Susana Agustí ◽  
Carlos M. Duarte ◽  
...  

The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.


2017 ◽  
Vol 4 ◽  
Author(s):  
Paraskevi Pitta ◽  
Maria Kanakidou ◽  
Nikolaos Mihalopoulos ◽  
Sylvia Christodoulaki ◽  
Panagiotis D. Dimitriou ◽  
...  

2014 ◽  
Vol 11 (5) ◽  
pp. 6985-7028 ◽  
Author(s):  
U. Christaki ◽  
D. Lefèvre ◽  
C. Georges ◽  
J. Colombet ◽  
P. Catala ◽  
...  

Abstract. Microbial food web dynamics were determined during the onset of several spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island in the Southern Ocean (KEOPS2). The abundances of heterotrophic bacteria and heterotrophic nanoflagellates, bacterial heterotrophic production, bacterial respiration, and bacterial growth efficiency, were consistently higher in surface waters of the iron-fertilized sites than at the reference site in HNLC (high nutrient low chlorophyll) waters. The abundance of viral like particles remained unchanged, but viral production increased by a factor of 6 in iron-fertilized waters. Bacterial heterotrophic production was significantly related to heterotrophic nanoflagellate abundance and viral production across all sites, with bacterial production explaining about 70 and 85%, respectively, of the variance of each in the mixed layer (ML). Estimated rates of grazing and viral lysis, however, indicated that heterotrophic nanoflagellates accounted for a substantially higher loss of bacterial production (50%) than viruses (11%). Combining these results with rates of primary production and export determined for the study area, a budget for the flow of carbon through the microbial food web and higher levels during the early (KEOPS2) and the late phase (KEOPS1) of the Kerguelen bloom is provided.


2015 ◽  
Vol 60 (2) ◽  
pp. 360-374 ◽  
Author(s):  
Aud Larsen ◽  
Jorun K. Egge ◽  
Jens C. Nejstgaard ◽  
Iole Di Capua ◽  
Runar Thyrhaug ◽  
...  

2021 ◽  
Author(s):  
Julie Dinasquet ◽  
Estelle Bigeard ◽  
Frédéric Gazeau ◽  
Farooq Azam ◽  
Cécile Guieu ◽  
...  

Abstract. In the oligotrophic waters of the Mediterranean Sea, during the stratification period, the microbial loop relies on pulsed inputs of nutrients through atmospheric deposition of aerosols from both natural (Saharan dust) and anthropogenic origins. While the influence of dust deposition on microbial processes and community composition is still not fully constrained, the extent to which future environmental conditions will affect dust inputs and the microbial response is not known. The impact of atmospheric wet dust deposition was studied both under present and future (warming and acidification) environmental conditions through experiments in 300 L climate reactors. Three dust addition experiments were performed with surface seawater collected from the Tyrrhenian Sea, Ionian Sea and Algerian basin in the Western Mediterranean Sea during the PEACETIME cruise in May–June 2017. Top-down controls on bacteria, viral processes and community, as well as microbial community structure (16S and 18S rDNA amplicon sequencing) were followed over the 3–4 days experiments. Different microbial and viral responses to dust were observed rapidly after addition and were most of the time higher when combined to future environmental conditions. The input of nutrients and trace metals changed the microbial ecosystem from bottom-up limited to a top-down controlled bacterial community, likely from grazing and induced lysogeny. The composition of mixotrophic microeukaryotes and phototrophic prokaryotes was also altered. Overall, these results suggest that the effect of dust deposition on the microbial loop is dependent on the initial microbial assemblage and metabolic state of the tested water, and that predicted warming, and acidification will intensify these responses, affecting food web processes and biogeochemical cycles.


2007 ◽  
Vol 64 (1-4) ◽  
pp. 15-34 ◽  
Author(s):  
T. Frede Thingstad ◽  
Harry Havskum ◽  
Ulla Li Zweifel ◽  
Elisa Berdalet ◽  
M. Montserrat Sala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document