scholarly journals Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt

2015 ◽  
Vol 12 (3) ◽  
pp. 2843-2896
Author(s):  
S. Z. Rosengard ◽  
P. J. Lam ◽  
W. M. Balch ◽  
M. E. Auro ◽  
S. Pike ◽  
...  

Abstract. Sequestration of carbon by the marine biological pump depends on the processes that alter, remineralize and preserve particulate organic carbon (POC) during transit to the deep ocean. Here, we present data collected from the Great Calcite Belt, a calcite-rich band across the Southern Ocean surface, to compare the transformation of POC in the euphotic and mesopelagic zones of the water column. The 234Th-derived export fluxes and size-fractionated concentrations of POC, particulate inorganic carbon (PIC), and biogenic silica (BSi) were measured from the upper 1000 m of 27 stations across the Atlantic and Indian sectors of the Great Calcite Belt. POC export out of the euphotic zone was correlated with BSi export. PIC export was not, but did correlate positively with POC flux transfer efficiency. Moreover, regions of high BSi concentrations, which corresponded to regions with proportionally larger particles, exhibited higher attenuation of >51 μm POC concentrations in the mesopelagic zone. The interplay among POC size partitioning, mineral composition and POC attenuation suggests a more fundamental driver of POC transfer through both depth regimes in the Great Calcite Belt. In particular, we argue that diatom-dominated communities produce large and labile POC aggregates, which generate high export fluxes but also drive more remineralization in the mesopelagic zone. We observe the opposite in communities with smaller calcifying phytoplankton, such as coccolithophores. We hypothesize that these differences are influenced by inherent differences in the lability of POC exported by different phytoplankton communities.

2015 ◽  
Vol 12 (13) ◽  
pp. 3953-3971 ◽  
Author(s):  
S. Z. Rosengard ◽  
P. J. Lam ◽  
W. M. Balch ◽  
M. E. Auro ◽  
S. Pike ◽  
...  

Abstract. Sequestration of carbon by the marine biological pump depends on the processes that alter, remineralize, and preserve particulate organic carbon (POC) during transit to the deep ocean. Here, we present data collected from the Great Calcite Belt, a calcite-rich band across the Southern Ocean surface, to compare the transformation of POC in the euphotic and mesopelagic zones of the water column. The 234Th-derived export fluxes and size-fractionated concentrations of POC, particulate inorganic carbon (PIC), and biogenic silica (BSi) were measured from the upper 1000 m of 27 stations across the Atlantic and Indian sectors of the Great Calcite Belt. POC export out of the euphotic zone was correlated with BSi export. PIC export was not, but did correlate positively with POC flux transfer efficiency. Moreover, regions of high BSi concentrations, which corresponded to regions with proportionally larger particles, exhibited higher attenuation of > 51 μm POC concentrations in the mesopelagic zone. The interplay among POC size partitioning, mineral composition, and POC attenuation suggests a more fundamental driver of POC transfer through both depth regimes in the Great Calcite Belt. In particular, we argue that diatom-rich communities produce large and labile POC aggregates, which not only generate high export fluxes but also drive more remineralization in the mesopelagic zone. We observe the opposite in communities with smaller calcifying phytoplankton, such as coccolithophores. We hypothesize that these differences are influenced by inherent differences in the lability of POC exported by different phytoplankton communities.


2013 ◽  
Vol 10 (8) ◽  
pp. 13639-13677 ◽  
Author(s):  
M. Bressac ◽  
C. Guieu ◽  
D. Doxaran ◽  
F. Bourrin ◽  
K. Desboeufs ◽  
...  

Abstract. Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3–6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42–50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Manno ◽  
S. Fielding ◽  
G. Stowasser ◽  
E. J. Murphy ◽  
S. E. Thorpe ◽  
...  

AbstractAntarctic krill play an important role in biogeochemical cycles and can potentially generate high-particulate organic carbon (POC) fluxes to the deep ocean. They also have an unusual trait of moulting continuously throughout their life-cycle. We determine the krill seasonal contribution to POC flux in terms of faecal pellets (FP), exuviae and carcasses from sediment trap samples collected in the Southern Ocean. We found that krill moulting generated an exuviae flux of similar order to that of FP, together accounting for 87% of an annual POC flux (22.8 g m−2 y−1). Using an inverse modelling approach, we determined the krill population size necessary to generate this flux peaked at 261 g m−2. This study shows the important role of krill exuviae as a vector for POC flux. Since krill moulting cycle depends on temperature, our results highlight the sensitivity of POC flux to rapid regional environmental change.


2014 ◽  
Vol 11 (4) ◽  
pp. 1007-1020 ◽  
Author(s):  
M. Bressac ◽  
C. Guieu ◽  
D. Doxaran ◽  
F. Bourrin ◽  
K. Desboeufs ◽  
...  

Abstract. Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC–dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3–6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42–50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.


2015 ◽  
Vol 12 (11) ◽  
pp. 3153-3170 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen Plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth, current speeds were typically low (~ 10 cm s−1) and primarily tidal-driven (M2 tidal component). Although advection was weak, the sediment trap may have been subject to hydrodynamical and biological (swimmer feeding on trap funnel) biases. Particulate organic carbon (POC) flux was generally low (< 0.5 mmol m−2 d−1), although two episodic export events (< 14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1-month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was low considering the shallow deployment depth but comparable to independent estimates made at similar depths (~ 300 m) over the plateau, and to deep-ocean (> 2 km) fluxes measured from similarly productive iron-fertilized blooms. Although undertrapping cannot be excluded in shallow moored sediment trap deployment, we hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for the low POC flux beneath the base of the winter mixed layer. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.


2020 ◽  
Vol 17 (1) ◽  
pp. 245-263 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
Thomas W. Trull ◽  
Scott D. Nodder ◽  
José A. Flores ◽  
Helen Bostock ◽  
...  

Abstract. Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.


2019 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Rumi Ohgaito ◽  
Akinori Ito ◽  
Akira Oka

Abstract. Increased accumulation of respired carbon in the deep ocean associated with enhanced efficiency of the biological carbon pump is thought to be a key mechanism of glacial CO2 drawdown. Despite greater oxygen solubility due to sea surface cooling, recent quantitative and qualitative proxy data show glacial deep-water deoxygenation, reflecting increased accumulation of respired carbon. However, the mechanisms of deep-water deoxygenation and contribution from the biological pump to glacial CO2 drawdown have remained unclear. In this study, we report the significance of iron fertilization from glaciogenic dust for glacial CO2 decrease and deep-water deoxygenation using our numerical simulation, which successfully reproduces the magnitude and large-scale pattern of the observed oxygen changes from the present to Last Glacial Maximum. Sensitivity experiments reveal that physical changes (e.g., more sluggish ocean circulation) contribute to only half of all glacial deep deoxygenation, whereas the other half is driven by enhanced efficiency of the biological pump. We found that iron input from the glaciogenic dust with higher iron solubility is the most significant factor for enhancement of the biological pump and deep-water deoxygenation. Glacial deep-water deoxygenation expands the hypoxic waters in the deep Pacific and Indian Ocean. The simulated global volume of hypoxic waters is nearly double the present value, which suggest that the glacial deep-water is sever environment for the benthic animals. Our model underestimated the deoxygenation in the deep Southern Ocean due to enhanced ventilation. The model-proxy comparison of oxygen change suggest that the stratified Southern Ocean is required for reproducing oxygen decline in the deep Southern Ocean. Enhanced efficiency of biological pump contributes to decrease of glacial CO2 by more than 30 ppm, which is supported by the model-proxy agreement of oxygen change. Our findings confirm the significance of the biological pump in glacial CO2 drawdown and deoxygenation.


2014 ◽  
Vol 11 (12) ◽  
pp. 17043-17087 ◽  
Author(s):  
M. Rembauville ◽  
I. Salter ◽  
N. Leblond ◽  
A. Gueneugues ◽  
S. Blain

Abstract. A sediment trap moored in the naturally iron-fertilized Kerguelen plateau in the Southern Ocean provided an annual record of particulate organic carbon and nitrogen fluxes at 289 m. At the trap deployment depth current speeds were low (∼10 cm s−1) and primarily tidal-driven (M2 tidal component) providing favorable hydrodynamic conditions for the collection of flux. Particulate organic carbon (POC) flux was generally low (<0.5 mmol m−2 d−1) although two episodic export events (<14 days) of 1.5 mmol m−2 d−1 were recorded. These increases in flux occurred with a 1 month time lag from peaks in surface chlorophyll and together accounted for approximately 40% of the annual flux budget. The annual POC flux of 98.2 ± 4.4 mmol m−2 yr−1 was relatively low considering the shallow deployment depth, but similar to deep-ocean (>2 km) fluxes measured from similarly productive iron-fertilized blooms. Comparison of the sediment trap data with complementary estimates of biomass accumulation and export indicate that ∼90% of the flux was lost between 200 and 300 m. We hypothesize that grazing pressure, including mesozooplankton and mesopelagic fishes, may be responsible for rapid flux attenuation and the High Biomass Low Export regime characterizing the Kerguelen bloom. The importance of plankton community structure in controlling the temporal variability of export fluxes is addressed in a companion paper.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb3807
Author(s):  
Tao Li ◽  
Laura F. Robinson ◽  
Tianyu Chen ◽  
Xingchen T. Wang ◽  
Andrea Burke ◽  
...  

The Southern Ocean plays a crucial role in regulating atmospheric CO2 on centennial to millennial time scales. However, observations of sufficient resolution to explore this have been lacking. Here, we report high-resolution, multiproxy records based on precisely dated deep-sea corals from the Southern Ocean. Paired deep (∆14C and δ11B) and surface (δ15N) proxy data point to enhanced upwelling coupled with reduced efficiency of the biological pump at 14.6 and 11.7 thousand years (ka) ago, which would have facilitated rapid carbon release to the atmosphere. Transient periods of unusually well-ventilated waters in the deep Southern Ocean occurred at 16.3 and 12.8 ka ago. Contemporaneous atmospheric carbon records indicate that these Southern Ocean ventilation events are also important in releasing respired carbon from the deep ocean to the atmosphere. Our results thus highlight two distinct modes of Southern Ocean circulation and biogeochemistry associated with centennial-scale atmospheric CO2 jumps during the last deglaciation.


Sign in / Sign up

Export Citation Format

Share Document