scholarly journals Coupling the chemical dynamics of carbonate and dissolved inorganic nitrogen systems in the eutrophic and turbid inner Changjiang (Yangtze River) Estuary

2015 ◽  
Vol 12 (8) ◽  
pp. 6405-6443
Author(s):  
W.-D. Zhai ◽  
X.-L. Yan

Abstract. To better understand biogeochemical processes controlling CO2 dynamics in those eutrophic large-river estuaries and coastal lagoons, we investigated surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary, covering its channel-like South Branch and the lagoon-like North Branch, shortly after a spring-tide period in April 2010. In the North Branch, with a water residence time of more than 2 months, biogeochemical additions of ammonium (7.4 to 65.7 μmol kg−1) and alkalinity (196 to 695 μmol kg−1) were detected along with high salinity of 4.5 to 17.4. In the South Branch upper-reach, unusual salinity values of 0.20 to 0.67 were detected, indicating spillover waters from the North Branch. The spillover waters enhanced the springtime Changjiang export fluxes of nutrients, dissolved inorganic carbon, and alkalinity. And they affected the biogeochemistry in the South Branch, by lowering water-to-air CO2 flux and continuing the nitrification reaction. In the North Branch, pCO2 was measured from 930 to 1518 μatm at the salinity range between 8 and 16, which was substantially higher than the South Branch pCO2 of 700 to 1100 μatm. Based on field data analyses and simplified stoichiometric equations, we suggest that the North Branch CO2 productions were quantified by biogeochemical processes combining organic matter decomposition, nitrification, CaCO3 dissolution, and acid-base reactions in the estuarine mixing zone. Although our study is subject to limited temporal and spatial coverage of sampling, we have demonstrated a procedure to quantificationally constrain net CO2 productions in eutrophic estuaries and/or coastal lagoons, by coupling the chemical dynamics of carbonate and dissolved inorganic nitrogen systems.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1099-1103
Author(s):  
Wei Na Zhang ◽  
Yi Gang Wang ◽  
Tong Jun Yang ◽  
Hui Ming Huang

Abstract. The saltwater intrusion in the Yangtze River Estuary is very frequent and complicated with a great effect on freshwater supply in Shanghai and nearby cities. By using the hydrologic data observed in dry season, the temporal and spatial variation of the saltwater intrusion in the Yangtze River Estuary were analyzed. The results show that the saltwater intrusion of the south branch is mainly induced by the saltwater spilling over from the north branch, which causes the Chenhang reservoir being plagued by saltwater intrusion during dry season. As the saltwater group from the north branch moving downward along the south branch, the longitudinal salinity distribution present a high-low-high shape during spring tide cycle, low-high-low-high shape during medium tide cycle and low-high shape during neap tide cycle along the south branch-south channel-south passage. Moreover, the north branch is controlled by high saline water with the increase of the salinity in the upstream reach in medium and spring tides, but this phenomenon is vanished in neap tide. In addition, the vertical distribution of salinity is more homogeneous in shoals than that in deep channels, which is induced by mixing degree in water column.


Author(s):  
Xiaoyan Zhou ◽  
Ulrich Zanke ◽  
Yixin Yan ◽  
Jinhai Zheng

In this paper a numerical morphodynamic model TIMOR3 has been introduced and applied to simulate the morphological response to the water and sediment changes in the Yangtze River Estuary. TIMOR3, coupled with Hydrodynamic Model and Wave Model, is used to simulate a long-term and huge area of the morphological changes in the Yangtze River Estuary. A detailed investigation was made to the south branch where the Deepwater Channel Navigation Project is under construction. The effect of the project in different phases with different water depth has been simulated and analyzed.


2021 ◽  
Vol 11 (19) ◽  
pp. 8986
Author(s):  
Cuiping Kuang ◽  
Kuo Chen ◽  
Jie Wang ◽  
Yunlong Wu ◽  
Xu Liu ◽  
...  

The typhoon impact on an estuarine environment is complex and systematic. A three-dimensional hydrodynamic and salinity transport model with a high-resolution, unstructured mesh and a spatially varying bottom roughness, is applied to investigate the effects of a historical typhoon, Fongwong, which affected Shanghai, on the hydrodynamics and saline water intrusion in the North Branch (NB) of the Yangtze River Estuary (YRE). The model is well validated through observation data of the tidal level, current velocity and direction, and salinity. The numerical results of this typhoon event show that: (1) the tidal level and its range increase toward the upstream part of the NB due to the combined effects of the funnel-shaped plane geometry of the NB and the typhoon; (2) the current velocity and the flow spilt ratio of the NB varies with the tides, with a maximum increase by 0.13 m/s and 26.61% during the flood tide and a maximum decrease by 0.12 m/s and 83.33% during the ebb tide, i.e., the typhoon enhances the flood current and weakens the ebb current; (3) the salinity value increases in the NB to a maximum of 1.40 psu and water is well-mixed in the vertical direction in the typhoon’s stable and falling period. The salinity distribution gradually recovered to the normal salt wedge pattern in 3 days following the typhoon. Although this study is based on a site-specific model, the findings will provide valuable insights into saline water intrusion under typhoon events, and thus assist in implementing more efficient estuarine management strategies for drinking water safety.


Sign in / Sign up

Export Citation Format

Share Document