scholarly journals Responses of Hydrodynamics and Saline Water Intrusion to Typhoon Fongwong in the North Branch of the Yangtze River Estuary

2021 ◽  
Vol 11 (19) ◽  
pp. 8986
Author(s):  
Cuiping Kuang ◽  
Kuo Chen ◽  
Jie Wang ◽  
Yunlong Wu ◽  
Xu Liu ◽  
...  

The typhoon impact on an estuarine environment is complex and systematic. A three-dimensional hydrodynamic and salinity transport model with a high-resolution, unstructured mesh and a spatially varying bottom roughness, is applied to investigate the effects of a historical typhoon, Fongwong, which affected Shanghai, on the hydrodynamics and saline water intrusion in the North Branch (NB) of the Yangtze River Estuary (YRE). The model is well validated through observation data of the tidal level, current velocity and direction, and salinity. The numerical results of this typhoon event show that: (1) the tidal level and its range increase toward the upstream part of the NB due to the combined effects of the funnel-shaped plane geometry of the NB and the typhoon; (2) the current velocity and the flow spilt ratio of the NB varies with the tides, with a maximum increase by 0.13 m/s and 26.61% during the flood tide and a maximum decrease by 0.12 m/s and 83.33% during the ebb tide, i.e., the typhoon enhances the flood current and weakens the ebb current; (3) the salinity value increases in the NB to a maximum of 1.40 psu and water is well-mixed in the vertical direction in the typhoon’s stable and falling period. The salinity distribution gradually recovered to the normal salt wedge pattern in 3 days following the typhoon. Although this study is based on a site-specific model, the findings will provide valuable insights into saline water intrusion under typhoon events, and thus assist in implementing more efficient estuarine management strategies for drinking water safety.

2014 ◽  
Vol 1010-1012 ◽  
pp. 1099-1103
Author(s):  
Wei Na Zhang ◽  
Yi Gang Wang ◽  
Tong Jun Yang ◽  
Hui Ming Huang

Abstract. The saltwater intrusion in the Yangtze River Estuary is very frequent and complicated with a great effect on freshwater supply in Shanghai and nearby cities. By using the hydrologic data observed in dry season, the temporal and spatial variation of the saltwater intrusion in the Yangtze River Estuary were analyzed. The results show that the saltwater intrusion of the south branch is mainly induced by the saltwater spilling over from the north branch, which causes the Chenhang reservoir being plagued by saltwater intrusion during dry season. As the saltwater group from the north branch moving downward along the south branch, the longitudinal salinity distribution present a high-low-high shape during spring tide cycle, low-high-low-high shape during medium tide cycle and low-high shape during neap tide cycle along the south branch-south channel-south passage. Moreover, the north branch is controlled by high saline water with the increase of the salinity in the upstream reach in medium and spring tides, but this phenomenon is vanished in neap tide. In addition, the vertical distribution of salinity is more homogeneous in shoals than that in deep channels, which is induced by mixing degree in water column.


2019 ◽  
Vol 7 (4) ◽  
pp. 92 ◽  
Author(s):  
Jian Shi ◽  
Chaofeng Tong ◽  
Jinhai Zheng ◽  
Chi Zhang ◽  
Xiangyu Gao

Kelvin-Helmholtz (K-H) instability plays a significant role in mixing. To investigate the existence of K-H instability along the North Passage of the Yangtze River Estuary, the non-hydrostatic model NHWAVE is utilized to simulate the fresh-salt water mixing process along the North Passage of the Yangtze River Estuary. Using high horizontal resolution, the structure of K-H billows have been successfully captured within the Lower Reach of the North Passage. The K-H instability occurs between the max flood and high-water slack. The duration and length scale of the K-H billows highly depends on the local interaction between fresh-water discharge and tide. The horizontal length scale of the instability is about 60 m, similar to the observations in other estuaries. In the vertical direction, the K-H billows exist within the pycnocline with length scale ranging from 6 to 7 m. The timescale of the billows is approximate 6 min. By analyzing the changes of potential energy during the mixing process, results show that the existence of K-H instability induces intense vertical mixing, which can greatly increase mixing efficiency in the North Passage of the Yangtze River Estuary.


Author(s):  
Zhi Xu ◽  
Jing Ma ◽  
Hao Wang ◽  
Jianshi Zhao

The Yangtze River Estuary (YRE) is the largest estuary in China. Recently, due to the increase of extent and frequency, saltwater intrusion has received more and more attention. In this paper, with the adoption of hydrodynamic and salinity transport mode, quantitative research of the influence of river discharge to the North Branch (NB) of the Yangtze River on the saltwater group migration law is conducted. Tide and salinity data are used to validate the model effectively. In different paths, the changes in flow and the movement of the saltwater group are similar. The saltwater group starts to move downward from the sixth day. In the staged downward movement, the larger the runoff volume, the further the distance of the core of the saltwater group, and converges to around 90 km gradually. At different flow rates, the relationship between the average location of each waterway saltwater group core tide cycle and time is consistent with the Gompertz model, and its parameters had a nonlinear relationship with the flow rate. A function is constructed to calculate the length and time of the saltwater group migration. As the flow rate increases, the faster the core of the saltwater group reaches the entrance. The downwards movement takes 3–8 days. Quantitative research on the influence of the saltwater spilling from NB to the three major reservoirs in the South Branch (SB)is conducted. The simulation results are consistent with the function calculation. River discharge has a direct impact on saltwater transport and diffusion in the YRE.


2021 ◽  
Vol 13 (10) ◽  
pp. 1875
Author(s):  
Wenping Xie ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang

Soil salt-water dynamics in the Yangtze River Estuary (YRE) is complex and soil salinity is an obstacle to regional agricultural production and the ecological environment in the YRE. Runoff into the sea is reduced during the impoundment period as the result of the water-storing process of the Three Gorges Reservoir (TGR) in the upper reaches of the Yangtze River, which causes serious seawater intrusion. Soil salinity is a problem due to shallow and saline groundwater under serious seawater intrusion in the YRE. In this research, we focused on the temporal variation and spatial distribution characteristics of soil salinity in the YRE using geostatistics combined with proximally sensed information obtained by an electromagnetic induction (EM) survey method in typical years under the impoundment of the TGR. The EM survey with proximal sensing method was applied to perform soil salinity survey in field in the Yangtze River Estuary, allowing quick determination and quantitative assessment of spatial and temporal variation of soil salinity from 2006 to 2017. We developed regional soil salinity survey and mapping by coupling limited laboratory data with proximal sensed data obtained from EM. We interpreted the soil electrical conductivity by constructing a linear model between the apparent electrical conductivity data measured by an EM 38 device and the soil electrical conductivity (EC) of soil samples measured in laboratory. Then, soil electrical conductivity was converted to soil salt content (soil salinity g kg−1) through established linear regression model based on the laboratory data of soil salinity and soil EC. Semivariograms of regional soil salinity in the survey years were fitted and ordinary kriging interpolation was applied in interpolation and mapping of regional soil salinity. The cross-validation results showed that the prediction results were acceptable. The soil salinity distribution under different survey years was presented and the area of salt affected soil was calculated using geostatistics method. The results of spatial distribution of soil salinity showed that soil salinity near the riverbanks and coastlines was higher than that of inland. The spatial distribution of groundwater depth and salinity revealed that shallow groundwater and high groundwater salinity influenced the spatial distribution characteristics of soil salinity. Under long-term impoundment of the Three Gorges Reservoir, the variation of soil salinity in different hydrological years was analyzed. Results showed that the area affected by soil salinity gradually increased in different hydrological year types under the impoundment of the TGR.


Sign in / Sign up

Export Citation Format

Share Document