scholarly journals Short-scale temporal variability of physical, biological and biogeochemical processes in the NW Mediterranean Sea: an introduction

2008 ◽  
Vol 5 (6) ◽  
pp. 5233-5251 ◽  
Author(s):  
V. Andersen ◽  
M. Goutx ◽  
L. Prieur ◽  
J. R. Dolan

Abstract. In the framework of the PROOF-PECHE project (www.obs-vlfr.fr/proof/vt/op/ec/peche/pec.htm) a multi-disciplinary team performed experiments and collected samples during the DYNAPROC2 cruise aboard the RV Thalassa from September to October in 2004. The cruise provided data on the functioning of the pelagic food web by sampling over a month long period in the NW Mediterranean Sea at a fixed station subject to weak horizontal advection currents during a period of hydrological stability. This paper describes the background of the cruise and provides an overview of the results derived from the campaign which constitute the special section. The major objective of the cruise was to assess the relative importance and variability of the pathways of carbon in the open ocean. Intensive sampling through 4 periods of 5 days each was accomplished a site near the DYFAMED time-series site. The site was near stable in terms of hydrodynamics as there was some evidence of an intrusion of low-salinity coastal water. One major product of the cruise was a comprehensive data set data set acquired by sampling at high frequencies (ranging from every 3, 6, 12 and/or 24 h) and over a vertical spatial dimension so far never explored (0–1000 m) in the North Western Mediterranean Sea. Parameters investigated included the biochemical composition of DOM (lipids), and the structure of bacterial communities, phytoplankton and zooplankton community compositions and abundances, as well as zooplankton metabolism, and particulate organic carbon fluxes. Nearly all the parameters described in this section, as well as reports appearing elsewhere, showed time-course variabilities of similar magnitude to those known from a previous study of the spring-summer seasonal transition, a period of marked hydrological change, at the same study site.

2009 ◽  
Vol 6 (3) ◽  
pp. 453-461 ◽  
Author(s):  
V. Andersen ◽  
M. Goutx ◽  
L. Prieur ◽  
J. R. Dolan

Abstract. In the framework of the PROOF-PECHE project (http://www.obs-vlfr.fr/proof/vt/op/ec/peche/pec.htm) a multi-disciplinary team performed experiments and collected samples during the DYNAPROC 2 cruise aboard the RV Thalassa from September to October in 2004. The cruise provided data on the functioning of the pelagic food web by sampling over a month long period in the NW Mediterranean Sea at a fixed station subject to weak horizontal advection currents during a period of hydrological stability. This paper describes the background of the cruise and provides an overview of the results derived from the campaign which constitute the special section. The major objective of the cruise was to assess the relative importance and variability of the pathways of carbon in the open ocean. Intensive sampling through 4 periods of 5 days each was accomplished at a site near the DYFAMED time-series site. The site was near stable in terms of hydrodynamics as there was some evidence of an intrusion of low-salinity coastal water. The cruise yielded a comprehensive data set acquired by sampling over a vertical spatial dimension (0–1000 m) and at high frequencies (ranging from every 3, 6, 12 and/or 24 h), unique for the summer to autumn transition in the North Western Mediterranean. Parameters investigated included the biochemical composition of dissolved organic matter (lipids), and the structure of bacterial communities, phytoplankton and zooplankton community compositions and abundances, as well as zooplankton metabolism, and particulate organic carbon fluxes. Nearly all the parameters described in this section, as well as reports appearing elsewhere, showed time-course variabilities of similar magnitude to those known from a previous study of the spring-summer seasonal transition, a period of marked hydrological change, at the same study site. Remarkably, the least variable characteristic of the system appeared to be the identities of the dominant taxa across several trophic levels (copepods, phytoplankton, ciliates, and bacteria) throughout the study period despite large shifts in stock sizes and fluxes. Thus, the studies of DYNAPROC 2 documented considerable temporal variability of stocks and rates in a system which was, from a hydrological and taxonomic point of view, relatively stable.


2010 ◽  
Vol 7 (1) ◽  
pp. 1377-1406 ◽  
Author(s):  
J. C. Marty ◽  
J. Chiavérini

Abstract. Data obtained during the monthly cruises of the DYFAMED time-series study (northwestern Mediterranean Sea) in the period 1995–2007 were compiled to examine the hydrological changes and the linked evolution of some biogeochemical characteristics. A regular increase of temperature and salinity (0.005 °C y−1, 0.0022 psu y−1) was recorded in deep waters of the NW Mediterranean Sea (2000 m depth) during 1995–2005. In February 2006 an abrupt increase in T (+0.1 °C) and S (+0.03 psu) was measured as the result of successive intense winter mixing events during the 3 previous years. The February 2006 event led to the mixing of the whole water column (0 to > 2000 m) and increased salt and heat content of the Western Mediterranean Deep Water by mixing with saltier and warmer Levantine Intermediate Water. The deficit in fresh water inputs to the western Mediterranean basin in three successive years (2003–2005) was suspected to be the major cause of this event since an increase of salinity in surface waters was monitored during these years. The measured phytoplankton biomass was specifically high after the periods of intense mixing. Chlorophyll a integrated biomass reached 230 mg m−2 in 1999, 175 mg m−2 in 2003, and 206 mg m−2 in 2006. The high levels of biomass were related to the particularly high increases in nutrients content in surface layers following the intense water column mixing and the subsequent development of a diatom bloom (as seen by fucoxanthin content). The frequency of extreme events (high mixing, high nutrients, and high biomass) increased in recent years. Our results suggested that the NW Mediterranean Sea could have an increased productivity and was not deriving towards the decreased productivity predicted by models.


2010 ◽  
Vol 7 (7) ◽  
pp. 2117-2128 ◽  
Author(s):  
J. C. Marty ◽  
J. Chiavérini

Abstract. Data obtained during the monthly cruises of the DYFAMED time-series study (northwestern Mediterranean Sea) in the period 1995–2007 were compiled to examine the hydrological changes and the linked variation of some biogeochemical characteristics (nutrients and pigments). A regular increase of temperature and salinity (0.005 °C y−1, 0.0022 psu y−1) was recorded in deep waters of the NW Mediterranean Sea (2000 m depth) during 1995–2005. In February 2006 an abrupt increase in T (+0.1 °C) and S (+0.03 psu) was measured at 2000 m depth as the result of successive intense winter mixing events during the 3 previous years. The February 2006 event led to the mixing of the whole water column (0 to >2000 m) and increased salt and heat content of the Western Mediterranean Deep Water by mixing with saltier and warmer Levantine Intermediate Water. The deficit in fresh water inputs to the western Mediterranean basin in three successive years (2003–2005) was suspected to be the major cause of this event since an increase of salinity in surface waters was monitored during these years. The measured phytoplankton biomass was specifically high after the periods of intense mixing. Chlorophyll a integrated biomass reached 230 mg m−2 in 1999, 175 mg m−2 in 2003, and 206 mg m−2 in 2006. The high levels of biomass were related to the particularly high increases in nutrients content in surface layers following the intense water column mixing and the subsequent development of a diatom bloom (as seen by fucoxanthin content). The occurrence of extreme events (high mixing, high nutrients, and high biomass) increased in recent drought years (2003 to 2006). Our results indicated that the NW Mediterranean Sea productivity is increasing.


2020 ◽  
pp. 105227
Author(s):  
Elena Lloret-Lloret ◽  
Maria Grazia Pennino ◽  
Daniel Vilas ◽  
José María Bellido ◽  
Joan Navarro ◽  
...  

2013 ◽  
Vol 118 ◽  
pp. 81-94 ◽  
Author(s):  
Catalina Pasqual ◽  
Miguel A. Goñi ◽  
Tommaso Tesi ◽  
Anna Sanchez-Vidal ◽  
Antoni Calafat ◽  
...  

2012 ◽  
Vol 77 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Pierre Sabatier ◽  
Laurent Dezileau ◽  
Christophe Colin ◽  
Louis Briqueu ◽  
Frédéric Bouchette ◽  
...  

A high-resolution record of paleostorm events along the French Mediterranean coast over the past 7000 years was established from a lagoonal sediment core in the Gulf of Lions. Integrating grain size, faunal analysis, clay mineralogy and geochemistry data with a chronology derived from radiocarbon dating, we recorded seven periods of increased storm activity at 6300–6100, 5650–5400, 4400–4050, 3650–3200, 2800–2600, 1950–1400 and 400–50 cal yr BP (in the Little Ice Age). In contrast, our results show that the Medieval Climate Anomaly (1150–650 cal yr BP) was characterised by low storm activity.The evidence for high storm activity in the NW Mediterranean Sea is in agreement with the changes in coastal hydrodynamics observed over the Eastern North Atlantic and seems to correspond to Holocene cooling in the North Atlantic. Periods of low SSTs there may have led to a stronger meridional temperature gradient and a southward migration of the westerlies. We hypothesise that the increase in storm activity during Holocene cold events over the North Atlantic and Mediterranean regions was probably due to an increase in the thermal gradient that led to an enhanced lower tropospheric baroclinicity over a large Central Atlantic-European domain.


2012 ◽  
Vol 168 ◽  
pp. 87-95 ◽  
Author(s):  
Joan A. Salvadó ◽  
Joan O. Grimalt ◽  
Jordi F. López ◽  
Xavier Durrieu de Madron ◽  
Serge Heussner ◽  
...  

2008 ◽  
Vol 153 (1) ◽  
pp. 157-168 ◽  
Author(s):  
Izaskun Zorita ◽  
Maren Ortiz-Zarragoitia ◽  
Itxaso Apraiz ◽  
Ibon Cancio ◽  
Amaia Orbea ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Fernando Gómez ◽  
Alf Skovgaard

Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentativelySynchaetasp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches among the dinokaryotic dinoflagellates.


Sign in / Sign up

Export Citation Format

Share Document