scholarly journals Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

2010 ◽  
Vol 7 (5) ◽  
pp. 7629-7655 ◽  
Author(s):  
D. Liu ◽  
W. Ding ◽  
Z. Jia ◽  
Z. Cai

Abstract. Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau. The top soil layer had the highest population of methanogens (1.07−8.29×109 cells g−1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2=0.718, P<0.001, n=13) and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2=0.758, P<0.001, n=13) in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2=0.011, P>0.05, n=13), it is related to the dissolved organic carbon concentration (R2=0.305, P=0.05, n=13). This suggests that the methanogen population is not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 274 μg CH4 kg−1 soil d−1 in the Poyang wetland to 665 μg CH4 kg−1 soil d−1 in the Carex lasiocarpa marsh of the Sanjiang Plain. The CH4 production potential in the freshwater wetlands of Eastern China is affected by the supply of methanogenic substrates rather than by temperature, whereas the supply of substrates was mainly affected by the position and stability of the wetland water table. In contrast, low summer temperatures at high elevations in the Ruoergai peatland of the Qinghai-Tibetan Plateau result in the presence of dominant species of methanogens with low CH4 production potential rather than the reduction of the supply of methanogenic substrates, which in turn suppresses CH4 production.

2011 ◽  
Vol 8 (2) ◽  
pp. 329-338 ◽  
Author(s):  
D. Y. Liu ◽  
W. X. Ding ◽  
Z. J. Jia ◽  
Z. C. Cai

Abstract. Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07–8.29 × 109 cells g−1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P < 0.001, n = 13) and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2 = 0.76, P < 0.001, n = 13) in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13), it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13). This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 273.64 μg CH4 kg−1 soil d−1 in the Poyang wetland to 664.59 μg CH4 kg−1 soil d−1 in the Carex lasiocarpa marsh of the Sanjiang Plain. We conclude that CH4 production potential in the freshwater wetlands of Eastern China is mainly affected by the supply of methanogenic substrates rather than temperature; in contrast, low summer temperatures at high elevations in the Ruoergai peatland of the Qinghai–Tibetan Plateau result in the presence of dominant species of methanogens with low CH4 production potential, which in turn suppresses CH4 production.


2020 ◽  
Vol 19 (1) ◽  
pp. 1-9
Author(s):  
Piyakarn Teartisup ◽  
◽  
Prapeut Kerdsueb ◽  
Suwalee Worakhunpiset ◽  
◽  
...  

Seasonal flooded forest is one of the most important wetlands in northeastern Thailand, not only for its abundant biodiversity, but also as a source of carbon sequestration. Organic carbon plays an specially important role in the soil carbon cycle. To reinforce comprehension on soil organic carbon, five profiles in a northeast plateau were observed and determined. The most common trees were Albizzia Odoratissima, Combretum quadrangulare Kurz, and Streblusasper Lour. The contents of Soil Organic Carbon (SOC) varied from 3.52 g/kgto 5.90 g/kg in top soil and varied from 4.01 g/kg to 4.60 g/kg in sub soil. There was a close relationship between SOC content and basic soil properties, especially the bulk density of both top soil layer and sub soil layer. The distribution of SOC content was harmonized with distribution of plants. In comparative analysis, the flooded forest that composted with a high percentage of vegetation coverage (Khud Tew, Khud Chi Tao) had a significantly higher SOC content. The SOC storage varied from 2.65 kg/m2 to 4.18 kg/m2. Khud Chi Tao contained the maximum amount of SOC storage, whereas Kwo Chi Yai had the minimum. Limitation of flooded forest survival concerned over landscape change, particularly plant disappearance and waterlogged shortage. Therefore, vegetation and hydrology management have to be implemented practically to retain the existing organic carbon in wetlands and allow the soil to sequester additional carbon.


2013 ◽  
Vol 17 (1) ◽  
pp. 371-378 ◽  
Author(s):  
L. L. Wang ◽  
C. C. Song ◽  
G. S. Yang

Abstract. Dissolved organic carbon (DOC) is a significant component of carbon and nutrient cycling in fluvial ecosystems. Natural wetlands, as important DOC sources for river and ocean ecosystems, have experienced extensive natural and anthropogenic disturbances such as climate change, hydrological variations and land use change in recent years. The DOC characteristics in surface ponds from contrasting wetlands in the Sanjiang Plain, Northeastern China were investigated. Surface ponds at seven sites (two natural phialiform wetlands, three natural riparian wetlands, one degraded wetland and one artificial wetland, i.e., rice paddy) were monitored during the growing seasons of 2009 and 2010. The results show that the surface ponds at the five natural wetland sites exhibited a wide range of DOC concentrations (10.06–48.73 mg L−1) during the study period. The DOC concentrations showed no annual differences (P > 0.05) at all the wetland sites, except one of the phialiform wetland sites. The two phialiform wetlands exhibited higher DOC concentrations than the three riparian wetlands (P < 0.05). The DOC concentration in the surface pond at the artificial wetland site was relatively low (P < 0.05) compared to that at the degraded wetland site. The C/C ratios (the color per carbon unit ratio, Abs400/DOC concentration) showed inconsistent variations among these seven wetland sites, while the E4/E6 ratio (Abs465/Abs665, fulvic acid/humic acid) from the surface pond in the rice paddy land exerted 42.07–55.36% reductions (P < 0.05), compared to those at the five natural wetland sites. Furthermore, the E4/E6 ratio in the surface pond at the rice paddy site was significantly lower compared to that at the degraded wetland site (P < 0.05), which indicated that disturbance to wetland DOC in surface ponds might be stronger when natural wetlands were converted to rice paddies in comparison with wetland degradation. This study could not only provide insightful points for understanding the aquatic DOC dynamics from different wetland ecosystems, but also support data information for incorporating the aquatic DOC into the model for regional carbon budgets in the future.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


Sign in / Sign up

Export Citation Format

Share Document