Supplementary material to "Oligocene–Miocene paleoceanography off the Wilkes Land Margin (East Antarctica) based on organic-walled dinoflagellate cysts"

Author(s):  
Peter K. Bijl ◽  
Alexander J. P. Houben ◽  
Julian D. Hartman ◽  
Jörg Pross ◽  
Ariadna Salabarnada ◽  
...  
2017 ◽  
Author(s):  
Julian D. Hartman ◽  
Francesca Sangiorgi ◽  
Ariadna Salabarnada ◽  
Francien Peterse ◽  
Alexander J. P. Houben ◽  
...  

2018 ◽  
Vol 37 (1) ◽  
pp. 105-138 ◽  
Author(s):  
Peter K. Bijl ◽  
Alexander J. P. Houben ◽  
Anja Bruls ◽  
Jörg Pross ◽  
Francesca Sangiorgi

Abstract. There is growing interest in the scientific community in reconstructing the paleoceanography of the Southern Ocean during the Oligocene–Miocene because these time intervals experienced atmospheric CO2 concentrations with relevance to our future. However, it has remained notoriously difficult to put the sedimentary archives used in these efforts into a temporal framework. This is at least partially due to the fact that the bio-events recorded in organic-walled dinoflagellate cysts (dinocysts), which often represent the only microfossil group preserved, have not yet been calibrated to the international timescale. Here we present dinocyst ranges from Oligocene–Miocene sediments drilled offshore the Wilkes Land continental margin, East Antarctica (Integrated Ocean Drilling Program (IODP) Hole U1356A). In addition, we apply statistical means to test a priori assumptions about whether the recorded taxa were deposited in situ or were reworked from older strata. Moreover, we describe two new dinocyst species, Selenopemphix brinkhuisii sp. nov. and Lejeunecysta adeliensis sp. nov., which are identified as important markers for regional stratigraphic analysis. Finally, we calibrate all identified dinocyst events to the international timescale using independent age control from calcareous nanoplankton and magnetostratigraphy from IODP Hole U1356A, and we propose a provisional dinoflagellate cyst zonation scheme for the Oligocene–Miocene of the Southern Ocean.


2002 ◽  
Vol 34 ◽  
pp. 235-240 ◽  
Author(s):  
Massimo Frezzotti ◽  
Marco Polizzi

AbstractIce-front change may well be a sensitive indicator of regional climate change. We studied the coastal sector of Wilkes Land, East Antarctica, along the Adélie and Banzare Coasts, extending from Buchanan Bay (67°05’ S, 144°30’ E) to Porpoise Bay (67°S, 128°E). The glaciers in this area drain the northern part of Dome C (area 270 000 km2). A comparison of maps, photographs and satellite images, dated several years apart, led to an estimation of the fluctuations of 18 ice fronts over the 50 years 1947–97 .The area of the floating glaciers in 1963 was 3035 km2, and in 1989, 2785 km2. The main glaciers in the area are Zélée, Astrolabe, du Français, Commandant Charcot and Pourquoi Pas for the Adélie Coast, and Dibble, May, Sandford and Frost Glaciers for the Clarie and Banzare Coasts. Most of the floating glaciers have shown cyclical behaviour without a marked trend, but a general reduction since 1947. The reduction in the area of floating glaciers since the 1950s may be linked to changes in ice–ocean interaction, as noted for the floating glaciers of the George V Coast and the Cape Adare area, and sea-ice extent. The calving behaviour of the main glacier tongues is characterized by an accumulation of icebergs projecting from the coast to form iceberg tongues, held in place by grounding and joined together by annual or perennial fast ice.


Sign in / Sign up

Export Citation Format

Share Document