scholarly journals A revised Law Dome age model (LD2017) and implications for last glacial climate

Author(s):  
Jason Roberts ◽  
Andrew Moy ◽  
Christopher Plummer ◽  
Tas van Ommen ◽  
Mark Curran ◽  
...  

Abstract. Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 ka. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. The revised chronology incorporates extended continuous annual layer counting to 853 m using chemical species with seasonally-varying behaviours. The annual layer counted age at 853 m is 2332 years before 2000 (y b2k) with an error of +13/−7 y, i.e. 2345–2325 y b2k . Below this depth, non-linear interpolation between age ties using a probability density function for age/depth is used to constrain and model the age of the ice. The ice-based age ties below the annual layer counted section are based on matching volcanic event markers, methane (CH4) gas concentration, isotopic composition of ice (δ18O) and the Last Glacial Maximum (LGM) dust peak to other records. For consistency, the timescale used for all matching is the AICC2012 timescale (Veres et al., 2013). The first ice-based age tie is the base of the annual layer counting record (2332 y b2k) and the age ties from ~ 2400–4000 y b2k are volcanic synchronised ice-based age ties. The detection of abrupt changes in CH4 gas concentrations within the DSS record provides further independent gas-based age ties, including the tightly constrained 8200 y b2k event. The improved age control between 9000 and 21000 y b2k is supplemented by CH4 and δ18O ice measurements (Pedro et al., 2011). Over the period 16600 to 18600 y b2k large changes in dust concentration, matched to the EDC dust record, are used to constrain two ice-based age ties. Unlike previous studies, where the modelling was used to simultaneously infer both age and snow accumulation rate, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.

2014 ◽  
Vol 10 (3) ◽  
pp. 1195-1209 ◽  
Author(s):  
T. J. Fudge ◽  
E. D. Waddington ◽  
H. Conway ◽  
J. M. D. Lundin ◽  
K. Taylor

Abstract. Antarctic ice cores have often been dated by matching distinctive features of atmospheric methane to those detected in annually dated ice cores from Greenland. Establishing the timescale between these tie-point ages requires interpolation. While the uncertainty at tie points is relatively well described, uncertainty of the interpolation is not. Here we assess the accuracy of three interpolation schemes using data from the WAIS Divide ice core in West Antarctica; we compare the interpolation methods with the annually resolved timescale for the past 30 kyr. Linear interpolation yields large age errors (up to 380 years) between tie points, abrupt changes in duration of climate events at tie points, and an age bias. Interpolations based on the smoothest accumulation rate (ACCUM) or the smoothest annual-layer thickness (ALT) yield timescales that more closely agree with the annually resolved timescale and do not have abrupt changes in duration at tie points. We use ALT to assess the uncertainty in existing timescales for the past 30 kyr from Byrd, Siple Dome, and Law Dome. These ice-core timescales were developed with methods similar to linear interpolation. Maximum age differences exceed 1000 years for Byrd and Siple Dome, and 500 years for Law Dome. For the glacial–interglacial transition (21 to 12 kyr), the existing timescales are, on average, older than ALT by 40 years for Byrd, 240 years for Siple Dome, and 150 years for Law Dome. Because interpolation uncertainty is often not considered, age uncertainties for ice-core records are often underestimated.


2014 ◽  
Vol 10 (1) ◽  
pp. 65-104 ◽  
Author(s):  
T. J. Fudge ◽  
E. D. Waddington ◽  
H. Conway ◽  
J. M. D. Lundin ◽  
K. Taylor

Abstract. Antarctic ice cores have often been dated by matching distinctive features of atmospheric methane to those detected in annually dated ice cores from Greenland. Establishing the timescale between these tie-point ages requires interpolation. While the uncertainty at tie points is relatively well described, uncertainty of the interpolation is not. Here we assess the accuracy of three interpolation schemes using data from the WAIS Divide ice core in West Antarctica; we compare the interpolation methods with the annually resolved timescale for the past 30 kyr. Linear interpolation yields large age errors (up to 380 yr) between tie points, abrupt changes in duration at tie points, and an age bias. Interpolation based on the smoothest accumulation rate (ACCUM) or the smoothest annual-layer thickness (ALT) yield timescales that more closely agree with the annually resolved timescale and do not have abrupt changes in duration at the tie points. We use ALT to assess the uncertainty in existing timescales for the past 30 kyr from Byrd, Siple Dome, and Law Dome. These ice-core timescales were developed with methods similar to linear interpolation. Maximum age differences exceed 1000 yr for Byrd and Siple Dome, and 500 yr for Law Dome. For the glacial-interglacial transition (21 to 12 kyr), the existing timescales are, on average, older than ALT by 40 yr for Byrd, 240 yr for Siple Dome, and 150 yr for Law Dome. Because interpolation uncertainty is often not considered, age uncertainties for ice-core records are often underestimated.


2004 ◽  
Vol 39 ◽  
pp. 457-466 ◽  
Author(s):  
Roberto Udisti ◽  
Silvia Becagli ◽  
Silvia Benassai ◽  
Martine De Angelis ◽  
Margareta E. Hansson ◽  
...  

AbstractTo assess the cause/effect relationship between climatic and environmental changes, we report high-resolution chemical profiles of the Dome C ice core (788m, 45 kyr), drilled in the framework of the European Project for Ice Coring in Antarctica (EPICA). Snow-concentration and depositional-flux changes during the last deglaciation were compared with climatic changes, derived by δD profile. Concentration and temperature profiles showed an anticorrelation, driven by changes in source intensity and transport efficiency of the atmospheric aerosol and by snow accumulation-rate variations. The flux calculation allowed correction for accumulation rate. While sulphate and ammonium fluxes are quite constant, Na+, Mg2+ and Ca2+ underwent the greatest changes, showing fluxes respectively about two, three and six times lower in the Holocene than in the Last Glacial Maximum. Chloride, nitrate and methanesulphonic acid (MSA) also exhibited large changes, but their persistence depends on depositional and post-depositional effects. The comparison between concentrations and δD profiles revealed leads and lags between chemical and temperature trends: Ca2+ and nitrate preceded by about 300 years the δD increase at the deglaciation onset, while MSA showed a 400 year delay. Generally, all components reached low Holocene values in the first deglaciation step (18.0–14.0 kyr BP), but Na+, Mg2+ and nitrate show changes during the Antarctic Cold Reversal (14.0– 12.5 kyr BP).


2008 ◽  
Vol 54 (185) ◽  
pp. 343-352 ◽  
Author(s):  
Susan Kaspari ◽  
Roger LeB. Hooke ◽  
Paul Andrew Mayewski ◽  
Shichang Kang ◽  
Shugui Hou ◽  
...  

AbstractAnnual-layer thickness data, spanning AD 1534–2001, from an ice core from East Rongbuk Col on Qomolangma (Mount Everest, Himalaya) yield an age–depth profile that deviates systematically from a constant accumulation-rate analytical model. The profile clearly shows that the mean accumulation rate has changed every 50–100 years. A numerical model was developed to determine the magnitude of these multi-decadal-scale rates. The model was used to obtain a time series of annual accumulation. The mean annual accumulation rate decreased from ∼0.8 m ice equivalent in the 1500s to ∼0.3 m in the mid-1800s. From ∼1880 to ∼1970 the rate increased. However, it has decreased since ∼1970. Comparison with six other records from the Himalaya and the Tibetan Plateau shows that the changes in accumulation in East Rongbuk Col are broadly consistent with a regional pattern over much of the Plateau. This suggests that there may be an overarching mechanism controlling precipitation and mass balance over this area. However, a record from Dasuopu, only 125 km northwest of Qomolangma and 700 m higher than East Rongbuk Col, shows a maximum in accumulation during the 1800s, a time during which the East Rongbuk Col and Tibetan Plateau ice-core and tree-ring records show a minimum. This asynchroneity may be due to altitudinal or seasonal differences in monsoon versus westerly moisture sources or complex mountain meteorology.


2005 ◽  
Vol 51 (172) ◽  
pp. 113-124 ◽  
Author(s):  
Massimo Frezzotti ◽  
Michel Pourchet ◽  
Onelio Flora ◽  
Stefano Gandolfi ◽  
Michel Gay ◽  
...  

AbstractRecent snow accumulation rate is a key quantity for ice-core and mass-balance studies. Several accumulation measurement methods (stake farm, fin core, snow-radar profiling, surface morphology, remote sensing) were used, compared and integrated at eight sites along a transect from Terra Nova Bay to Dome C, East Antarctica, to provide information about the spatial and temporal variability of snow accumulation. Thirty-nine cores were dated by identifying tritium/b marker levels (1965_66) and non-sea-salt (nss) SO42_ spikes of the Tambora (Indonesia) volcanic event (1816) in order to provide information on temporal variability. Cores were linked by snow radar and global positioning system surveys to provide detailed information on spatial variability in snow accumulation. Stake-farm and ice-core accumulation rates are observed to differ significantly, but isochrones (snow radar) correlate well with ice-core derived accumulation. The accumulation/ablation pattern from stake measurements suggests that the annual local noise (metre scale) in snow accumulation can approach 2 years of ablation and more than four times the average annual accumulation, with no accumulation or ablation for a 5 year period in up to 40% of cases. The spatial variability of snow accumulation at the kilometre scale is one order of magnitude higher than temporal variability at the multi-decadal/secular scale. Stake measurements and firn cores at Dome C confirm an approximate 30% increase in accumulation over the last two centuries, with respect to the average over the last 5000 years


2016 ◽  
Vol 62 (231) ◽  
pp. 31-36 ◽  
Author(s):  
SKYLAR A. HAINES ◽  
PAUL A. MAYEWSKI ◽  
ANDREI V. KURBATOV ◽  
KIRK A. MAASCH ◽  
SHARON B. SNEED ◽  
...  

ABSTRACTWe offer the first sub-seasonal view of glacial age archives from the Siple Dome-A (SDMA) ice core using the ultra-high resolution capabilities of a newly developed laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS; 121 µm sampling resolution) system capable of conducting multi-element glaciochemical analysis. Our ultra-high resolution data demonstrates that: (1) the SDMA ice core record can be annually dated based on seasonality in chemical inputs at a depth not previously possible using previous glaciochemical sampling methods, (2) winter accumulation at the SD site was greater than summer accumulation during the three late glacial periods selected (~15.3, 17.3, 21.4 Ka ago) in this study and (3) resulting annual layer thicknesses results show greater variability than the current SD ice core depth/age model (Brook and others, 2005), possibly due to depositional effects such as wind scouring and/or decadal variability in snow accumulation that is not captured by the resolution of the current depth/age model.


2021 ◽  
Vol 17 (5) ◽  
pp. 2073-2089
Author(s):  
Raffaello Nardin ◽  
Mirko Severi ◽  
Alessandra Amore ◽  
Silvia Becagli ◽  
Francois Burgay ◽  
...  

Abstract. Ice core dating is the first step for a correct interpretation of climatic and environmental changes. In this work, we release the dating of the uppermost 197 m of the 250 m deep GV7(B) ice core (drill site, 70∘41′ S, 158∘52′ E; 1950 m a.s.l. in Oates Land, East Antarctica) with a sub-annual resolution. Chemical records of NO3-, MSA (methanesulfonic acid), non-sea-salt SO42- (nssSO42-), sea-salt ions and water stable isotopes (δ18O) were studied as candidates for dating due to their seasonal pattern. Different procedures were tested but the nssSO42- record proved to be the most reliable on the short- and long-term scales, so it was chosen for annual layer counting along the whole ice core. The dating was constrained by using volcanic signatures from historically known events as tie points, thus providing an accurate age–depth relationship for the period 1179–2009 CE. The achievement of the complete age scale allowed us to calculate the annual mean accumulation rate throughout the analyzed 197 m of the core, yielding an annually resolved history of the snow accumulation on site in the last millennium. A small yet consistent rise in accumulation rate (Tr = 1.6, p<0.001) was found for the last 830 years starting around mid-18th century.


2015 ◽  
Vol 11 (2) ◽  
pp. 217-226 ◽  
Author(s):  
A. Tsushima ◽  
S. Matoba ◽  
T. Shiraiwa ◽  
S. Okamoto ◽  
H. Sasaki ◽  
...  

Abstract. A 180.17 m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008 to allow reconstruction of centennial-scale climate change in the northern North Pacific. The 10 m depth temperature in the borehole was −2.2 °C, which corresponded to the annual mean air temperature at the drilling site. In this ice core, there were many melt–refreeze layers due to high temperature and/or strong insolation during summer seasons. We analyzed stable hydrogen isotopes (δD) and chemical species in the ice core. The ice core age was determined by annual counts of δD and seasonal cycles of Na+, and we used reference horizons of tritium peaks in 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large forest fire in 2004 as age controls. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ± 3 years. We estimated that the mean accumulation rate from 1997 to 2007 (except for 2004) was 2.04 m w.eq. yr-1. Our results suggest that temporal variations in δD and annual accumulation rates are strongly related to shifts in the Pacific Decadal Oscillation index (PDOI). The remarkable increase in annual precipitation since the 1970s has likely been the result of enhanced storm activity associated with shifts in the PDOI during winter in the Gulf of Alaska.


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Lisa Lolk Hauge ◽  
Marius Simonsen ◽  
Zurine Yoldi ◽  
Iben Koldtoft ◽  
...  

Abstract. Polar researchers spend enormous costs transporting snow and ice samples to home laboratories for simple analyses in order to constrain annual layer thicknesses and identifying accumulation rates of specific sites. It is well known that depositional noise, incurred from wind drifts, seasonally-biased deposition, melt layers and more, can influence individual snow and firn records and that multiple cores are required to produce statistically robust time series. Thus at many sites core samples are measured in the field for densification, but the annual accumulation and the content of chemical impurities are often represented by just one core to reduce transport costs. We have developed a portable Light weight in Situ Analysis (LISA) box for ice, firn and snow analysis capable of constraining annual layers through the continuous flow analysis of melt water conductivity and peroxide under field conditions. The box can run using a small gasoline-generator and weighs less than 50 kg. The LISA box was tested under field conditions at the deep ice core drilling site EastGRIP in Northern Greenland. Analysis of the top 2 metres of snow from 7 sites in Northern Greenland (Figure 1) allowed the reconstruction of regional snow accumulation patterns for the period 2015–2019.


Sign in / Sign up

Export Citation Format

Share Document