scholarly journals Supplementary material to "Dust record in an ice core from tropical Andes (Nevado Illimani – Bolivia), potential for climate variability analyses in the Amazon basin"

Author(s):  
Filipe Gaudie Ley Lindau ◽  
Jefferson Cardia Simões ◽  
Rafael da Rocha Ribeiro ◽  
Patrick Ginot ◽  
Barbara Delmonte ◽  
...  
2020 ◽  
Author(s):  
Filipe Gaudie Ley Lindau ◽  
Jefferson Cardia Simões ◽  
Rafael da Rocha Ribeiro ◽  
Patrick Ginot ◽  
Barbara Delmonte ◽  
...  

Abstract. Understanding the mechanisms controlling glacial retreat in the tropical Andes can strengthen future predictions of ice cover in the region. As glaciers are a dominant freshwater source in these regions, accurate ice cover predictions are necessary for developing effective strategies to protect future water resources. In this study, we investigated a 97-year dust record from two Nevado Illimani ice cores to determine the dominant factors controlling particle concentration and size distribution. In addition, we measured the area of a Nevado Illimani glacier (glacier n°8) using aerial photographs from 1956 and 2009. We identified two dustier periods during the 20th century (1930s–1940s and 1980s–2016), which were linked to reduced moisture transport from the Amazon basin. This promoted an unprecedented increase in the percentage of coarse dust particles (CPPn, ∅ > 10 μm) during the 1990s, as drier local conditions favored the emission and deposition of coarse particles on the glacier. Moisture advection from the Amazon basin to Nevado Illimani was influenced by tropical North Atlantic sea surface temperatures (TNA), which was supported by the correlation between TNA and CPPn (r = 0.52). Furthermore, glacial retreat has been accelerating since the 1980s, and a notable relationship between CPPn and the freezing level height (FLH, r = 0.41) was observed. This suggests that higher FLHs promote glacial retreat, which exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Therefore, both the area of glacier n°8 and the ice core record of coarse dust particles were found to respond to climate variability—particularly to the warmer conditions across the southern tropical Andes and drier conditions over the Amazon basin.


2021 ◽  
Author(s):  
Rafael S. dos Reis ◽  
Rafael da Rocha Ribeiro ◽  
Barbara Delmonte ◽  
Edson Ramirez ◽  
Norberto Dani ◽  
...  

2018 ◽  
Vol 11 (6) ◽  
pp. 2299-2314 ◽  
Author(s):  
Rubén Banderas ◽  
Jorge Alvarez-Solas ◽  
Alexander Robinson ◽  
Marisa Montoya

Abstract. Offline forcing methods for ice-sheet models often make use of an index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from the Greenland ice-core temperature reconstruction, with present-day climatologies. An important drawback of this approach is that it clearly misrepresents climate variability at millennial timescales. The reason for this is that the spatial glacial–interglacial anomaly field used is associated with orbital climatic variations, while it is scaled following the characteristic time evolution of the index, which includes orbital and millennial-scale climate variability. The spatial patterns of orbital and millennial variability are clearly not the same, as indicated by a wealth of models and data. As a result, this method can be expected to lead to a misrepresentation of climate variability and thus of the past evolution of Northern Hemisphere (NH) ice sheets. Here we illustrate the problems derived from this approach and propose a new offline climate forcing method that attempts to better represent the characteristic pattern of millennial-scale climate variability by including an additional spatial anomaly field associated with this timescale. To this end, three different synthetic transient forcing climatologies are developed for the past 120 kyr following a perturbative approach and are applied to an ice-sheet model. The impact of the climatologies on the paleo-evolution of the NH ice sheets is evaluated. The first method follows the usual index approach in which temperature anomalies relative to the present are calculated by combining a simulated glacial–interglacial climatic anomaly field, interpolated through an index derived from ice-core data, with present-day climatologies. In the second approach the representation of millennial-scale climate variability is improved by incorporating a simulated stadial–interstadial anomaly field. The third is a refinement of the second one in which the amplitudes of both orbital and millennial-scale variations are tuned to provide perfect agreement with a recently published absolute temperature reconstruction over Greenland. The comparison of the three climate forcing methods highlights the tendency of the usual index approach to overestimate the temperature variability over North America and Eurasia at millennial timescales. This leads to a relatively high NH ice-volume variability on these timescales. Through enhanced ablation, this results in too low an ice volume throughout the last glacial period (LGP), below or at the lower end of the uncertainty range of estimations. Improving the representation of millennial-scale variability alone yields an important increase in ice volume in all NH ice sheets but especially in the Fennoscandian Ice Sheet (FIS). Optimizing the amplitude of the temperature anomalies to match the Greenland reconstruction results in a further increase in the simulated ice-sheet volume throughout the LGP. Our new method provides a more realistic representation of orbital and millennial-scale climate variability and improves the transient forcing of ice sheets during the LGP. Interestingly, our new approach underestimates ice-volume variations on millennial timescales as indicated by sea-level records. This suggests that either the origin of the latter is not the NH or that processes not represented in our study, notably variations in oceanic conditions, need to be invoked to explain millennial-scale ice-volume fluctuations. We finally provide here both our derived climate evolution of the LGP using the three methods as well as the resulting ice-sheet configurations. These could be of interest for future studies dealing with the atmospheric or/and oceanic consequences of transient ice-sheet evolution throughout the LGP and as a source of climate input to other ice-sheet models.


2001 ◽  
Vol 55 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Marie-Pierre Ledru ◽  
Renato Campello Cordeiro ◽  
José Maria Landim Dominguez ◽  
Louis Martin ◽  
Philippe Mourguiart ◽  
...  

AbstractNew pollen data from a core at Lagoa do Caçó, Maranhão state, Brazil (2°58′S 43°25′W; 120 m elevation), show higher frequencies of Podocarpus at the end of the Pleistocene than today. The increase in Podocarpus, which follows the successive increase of various pioneer species such as Didymopanax, Melastomataceae/Combretaceae, and Cecropia, implies a progressive late-glacial increase of moist and cool climatic conditions. A comparable increase in Podocarpus is found in other lowland records in Amazonia. A review of published pollen data from Amazonia suggests that the moisture source was from the southeast. By contrast, present-day moisture comes from the tropical Atlantic and from the Amazon basin, with its convective precipitation. The likely cause for the southeastern moisture source between ca. 15,000 and 14,500 cal yr B.P. was enhanced polar (Antarctic) advection that reached low latitudes and maintained year-round the meteorological equator in its austral-winter position at northern latitudes or reduced drastically its southward summer displacement. This hypothesis is consistent with marine and ice core records.


2020 ◽  
Author(s):  
Abhijith U. Venugopal ◽  
Nancy A. N. Bertler ◽  
Rebecca L. Pyne ◽  
Helle A. Kjær ◽  
V. Holly L. Winton ◽  
...  

2016 ◽  
Author(s):  
Juliana D'Andrilli ◽  
Christine M. Foreman ◽  
Michael Sigl ◽  
John C. Priscu ◽  
Joseph R. McConnell

2016 ◽  
Author(s):  
Mackenzie M. Grieman ◽  
Murat Aydin ◽  
Diedrich Fritzsche ◽  
Joseph R. McConnell ◽  
Thomas Opel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document