Late-Glacial Cooling in Amazonia Inferred from Pollen at Lagoa do Caçó, Northern Brazil

2001 ◽  
Vol 55 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Marie-Pierre Ledru ◽  
Renato Campello Cordeiro ◽  
José Maria Landim Dominguez ◽  
Louis Martin ◽  
Philippe Mourguiart ◽  
...  

AbstractNew pollen data from a core at Lagoa do Caçó, Maranhão state, Brazil (2°58′S 43°25′W; 120 m elevation), show higher frequencies of Podocarpus at the end of the Pleistocene than today. The increase in Podocarpus, which follows the successive increase of various pioneer species such as Didymopanax, Melastomataceae/Combretaceae, and Cecropia, implies a progressive late-glacial increase of moist and cool climatic conditions. A comparable increase in Podocarpus is found in other lowland records in Amazonia. A review of published pollen data from Amazonia suggests that the moisture source was from the southeast. By contrast, present-day moisture comes from the tropical Atlantic and from the Amazon basin, with its convective precipitation. The likely cause for the southeastern moisture source between ca. 15,000 and 14,500 cal yr B.P. was enhanced polar (Antarctic) advection that reached low latitudes and maintained year-round the meteorological equator in its austral-winter position at northern latitudes or reduced drastically its southward summer displacement. This hypothesis is consistent with marine and ice core records.

2002 ◽  
Vol 58 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Michael Baales ◽  
Olaf Jöris ◽  
Martin Street ◽  
Felix Bittmann ◽  
Bernhard Weninger ◽  
...  

AbstractWithin a period of a few weeks toward the end of the Allerød Interstadial, the major Plinian eruption of the Laacher See volcano produced some 20 km3 of eruptiva, covering and preserving the late-glacial landscape in the German Central Rhineland over an area of more than 1000 km2. Correlation of terrestrial archives with the Greenland ice-core records and improved calibration of the radiocarbon timescale permit a precise, accurate age determination of the Laacher See event some 200 yr before the onset of the Younger Dryas cold episode. Carbonized trees and botanical macrofossils preserved by Laacher See Tephra permit detailed regional paleoenvironmental reconstruction and show that open woodland were typical for the cool and humid hemiboreal climatic conditions during the late Allerød. This woodland provided the habitat for a large variety of animal species, documented at both paleontological and Final Paleolithic archeological sites preserved below Laacher See deposits. Of special interest are numerous animal tracks intercalated in Middle Laacher See deposits at the south of the Neuwied Basin. This knowledge may help to evaluate possible supraregional impacts of this volcanic event on northern hemispheric environment and climate during the late Allerød.


2012 ◽  
Vol 77 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Barbara Hermanowski ◽  
Marcondes Lima da Costa ◽  
Hermann Behling

New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4468
Author(s):  
Yalalt Nyamgerel ◽  
Yeongcheol Han ◽  
Minji Kim ◽  
Dongchan Koh ◽  
Jeonghoon Lee

The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.


1998 ◽  
Vol 104 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Stanislas Loboziak ◽  
José Henrique G. Melo ◽  
Maurice Streel
Keyword(s):  

This paper describes the morphology of a small piece of the Chalk escarpment near Brook in east Kent, and reconstructs its history since the end of the Last Glaciation. The escarpment contains a number of steep-sided valleys, or coombes, with which are associated deposits of chalk debris, filling their bottoms and extending as fans over the Gault Clay plain beyond. Here the fans overlie radiocarbon-dated marsh deposits of zone II (10 000 to 8800 B.C.) of the Late-glacial Period. The debris fans were formed and the coombes were cut very largely during the succeeding zone III (8800 to 8300 B.C.). The fans are the products of frost-shattering, probably transported by a combination of niveo-fluvial action and the release of spring waters; intercalated seams of loess also occur. The molluscs and plants preserved in the Late-glacial deposits give a fairly detailed picture of local conditions. The later history of one of the coombes, the Devil’s Kneadingtrough, is reconstructed. The springs have effected virtually no erosion and have probably always emerged more or less in their present position. In the floor of the coombe the periglacial chalk rubbles of zone III are covered by Postglacial deposits, mainly hillwashes. They are oxidized and yield no pollen, but contain rich faunas of land Mollusca, which are presented in the form of histograms revealing changing local ecological and climatic conditions. During most of the Post-glacial Period, from the end of zone III until about the beginning of zone VIII, very little accumulation took place on the coombe floor. But below the springs there are marsh deposits which span much of this interval. They yield faunas of considerable zoogeographical interest. The approximate beginning of zone VII a (Atlantic Period) is reflected by a calcareous tufa, which overlies a weathering horizon, and represents an increase in spring flow. Two clearance phases are deduced from the molluscan record. The first may have taken place at least as early as the Beaker Period (Late Neolithic/earliest Bronze Age); the second is probably of Iron Age ‘A’ date. In Iron Age times the subsoil was mobilized and a phase of rapid hillwashing began. As a result the valley floor became buried by humic chalk muds. The prime cause of this process was probably the beginning of intensive arable farming on the slopes above the coombe; a possible subsidiary factor may have been the Sub-Atlantic worsening of climate. The muds yield pottery ranging in date from Iron Age ‘Kentish first A’ ( ca . 500 to ca . 300 B.C.) to Romano-British ware of the first or second centuries A.D. Evidence is put forward for a possible climatic oscillation from dry to wet taking place at about the time of Christ. In the later stages of cultivation, possibly in the Roman Era, the valley floor was ploughed and given its present-day form.


2014 ◽  
Vol 12 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Bruno F. Melo ◽  
Richard P. Vari

A new species of Cyphocharax, Curimatidae, apparently endemic to the blackwater upper rio Negro of the Amazon basin in northern Brazil, is described.The new species is readily distinguished from its congeners by the presence of a distinctly longitudinally elongate, posteriorly vertically expanding patch of dark pigmentation along the midlateral surface of the caudal peduncle, with the patch extending from the base of the middle caudal-fin rays anteriorly past the vertical through the posterior terminus of the adipose fin. The new species additionally differs from all congeners in details of body and fin pigmentation and meristic and morphometric ratios. Evidence for the assignment of the species to Cyphocharax and the occurrence of other species of the Curimatidae apparently endemic to the upper rio Negro catchment is discussed.


2012 ◽  
Vol 8 (3) ◽  
pp. 1109-1125 ◽  
Author(s):  
R. Uemura ◽  
V. Masson-Delmotte ◽  
J. Jouzel ◽  
A. Landais ◽  
H. Motoyama ◽  
...  

Abstract. A single isotope ratio (δD or δ18O) of water is widely used as an air-temperature proxy in Antarctic ice core records. These isotope ratios, however, do not solely depend on air-temperature but also on the extent of distillation of heavy isotopes out of atmospheric water vapor from an oceanic moisture source to a precipitation site. The temperature changes at the oceanic moisture source (Δ Tsource) and at the precipitation site (Δ Tsite) can be retrieved by using deuterium-excess (d) data. A new d record from Dome Fuji, Antarctica spanning the past 360 000 yr is presented and compared with records from Vostok and EPICA Dome C ice cores. In previous studies, to retrieve Δ Tsource and Δ Tsite information, different linear regression equations were proposed using theoretical isotope distillation models. A major source of uncertainty lies in the coefficient of regression, βsite which is related to the sensitivity of d to Δ Tsite. We show that different ranges of temperature and selections of isotopic model outputs may increase the value of βsite by more than a factor of two. To explore the impacts of this coefficient on reconstructed temperatures, we apply for the first time the exact same methodology to the isotope records from the three Antarctica ice cores. We show that uncertainties in the βsite coefficient strongly affect (i) the glacial–interglacial magnitude of Δ Tsource; (ii) the imprint of obliquity in Δ Tsource and in the site-source temperature gradient. By contrast, we highlight the robustness of Δ Tsite reconstruction using water isotopes records.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Zohreh Maryanaji

Abstract Objective By studying the effect of environmental factors on health, it is clear that geographical, climatic and environmental factors have a significant impact on human health. This study, based on the data of the patients with breast cancer in Iran since 2010 to 2014 and using the statistical methods has determined the effect of geographical features of Iran (solar radiation status, radiation angle) on the frequency and distribution of this disease. Results The maximum amount of total solar radiation occurs in the vicinity (surrounding) of the tropic of cancer, which covers some parts of the south of Iran and in the atmosphere of the northern latitudes of Iran. The amount of humidity and cloudiness is more than the southern latitudes, which causes more reflection of short waves of the sun during the day. Findings showed that the rate of breast cancer in low latitudes is higher than high latitudes. It was also found that with increasing longitude, the rate of cancer increases significantly due to the high thickness of the atmosphere and receiving more sunlight in the electromagnetic spectrum, as well as dry air and low water vapor in low altitude areas of eastern and southeastern Iran.


2019 ◽  
Vol 15 (2) ◽  
pp. 713-733 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. Causes of the Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in central Europe during the Late Glacial, are considered to be keys for understanding rapid natural climate change in the past. The sediments from maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from the Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf-wax-derived lipid biomarkers (n-alkanes C27 and C29) and a hemicellulose-derived sugar biomarker (arabinose), respectively. Both δ2Hn-alkane and δ18Osugar are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. Leaf water reflects δ2H and δ18O of precipitation (primarily temperature-dependent) modified by evapotranspirative enrichment of leaf water due to transpiration. Based on the notion that the evapotranspirative enrichment depends primarily on relative humidity (RH), we apply a previously introduced “coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach” to reconstruct the deuterium excess of leaf water and in turn Late Glacial–Early Holocene RH changes from our Gemündener Maar record. Our results do not provide evidence for overall markedly dry climatic conditions having prevailed during the Younger Dryas. Rather, a two-phasing of the Younger Dryas is supported, with moderate wet conditions at the Allerød level during the first half and drier conditions during the second half of the Younger Dryas. Moreover, our results suggest that the amplitude of RH changes during the Early Holocene was more pronounced than during the Younger Dryas. This included the occurrence of a “Preboreal Humid Phase”. One possible explanation for this unexpected finding could be that solar activity is a hitherto underestimated driver of central European RH changes in the past.


2019 ◽  
Vol 56 (2) ◽  
pp. 175-182
Author(s):  
Timothy G. Fisher ◽  
Jennifer Horton ◽  
Kenneth Lepper ◽  
Henry Loope

The last aeolian activity of a significant number of inland sand dunes in the southern Great Lakes region (SGLR) was several thousands of years after deglaciation. At Mongo, Indiana, a field of parabolic sand dunes with a variety of morphologies are within the channel bottom of the Pigeon River meltwater channel, with some dunes having climbed up the channel wall onto the adjacent upland surface. The optically stimulated luminescence (OSL) samples from the channel-bottom dunes have a mean age of 14.2 ± 1.6 ka (n = 2) and the OSL samples from upland dunes have a mean age of 12.3 ± 1.6 ka (n = 4). Dunes and outwash ages and geomorphic setting constrain both the position of the Huron-Erie and Saginaw lobes. The oldest dune age is also a minimum age for cessation of local meltwater flow from the Huron-Erie Lobe of the Laurentide Ice Sheet and formation of the adjacent Sturgis Moraine of the Saginaw Lobe. The final activity of the dunes is coincident with late glacial stadial and interstadial events as recorded in the Greenland ice core records, a similar finding to all other studies of dunes in the SGLR. It is now well recognized that many dunes were last active before, during, and after the Younger Dryas stadial, presumably in response to a climate that was windier and less favorable for vegetation.


Sign in / Sign up

Export Citation Format

Share Document