scholarly journals Supplementary material to "Low-latitude climate change linked to high-latitude glaciation during the Late Paleozoic Ice Age: evidence from the terrigenous detrital kaolinite"

Author(s):  
Peixin Zhang ◽  
Jing Lu ◽  
Minfang Yang ◽  
Longyi Shao ◽  
Ziwei Wang ◽  
...  
2021 ◽  
Author(s):  
Peixin Zhang ◽  
Jing Lu ◽  
Minfang Yang ◽  
Longyi Shao ◽  
Ziwei Wang ◽  
...  

Abstract. The Late Paleozoic Ice Age (LPIA; ca. 360–260 million years ago) was one of the most significant glacial events in Earth history that records cycles of ice advance and retreat in southern high-latitude Gondwana and provides a deep-time perspective for climate-glaciation coevolution. However, climate records from the LIPA are poorly understood in low latitudes, particularly in the North China Plate (NCP) on the eastern Palaeo-Tethys. We address this through a detailed mineralogical study of the marine-continental sedimentary succession in the Yuzhou Coalfield from the southern NCP in which we apply Zircon U-Pb dating, biostratigraphy, and high-resolution clay mineral composition to reconstruct latest Carboniferous to early Permian chronostratigraphy and climate change. The Benxi, Taiyuan, and Shanxi formations in the study area are assigned to the Gzhelian, Asselian-Artinskian, and Kungurian-Roadian stages respectively and the Carboniferous Permian lithostratigraphy across NCP recognized as widely diachronous. Detrital micromorphology of kaolinite under scanning electron microscopy and illite crystallization indicates kaolinite contents to be a robust proxy for palaeoclimate reconstruction. Kaolinite data show alternating warm-humid and cool-humid climate conditions that are roughly consistent with the calibrated glacial-interglacial successions recognized in high-latitude eastern Australia, including the glaciations P1 (Asselian-early Sakmarian) and P2 (late Sakmarian-early Artinskian), as well as the climatic transition to glaciation P3 (Roadian). Our results indicate a comparatively cool-humid and warm-humid climate mode in low-latitude NCP during glacial and interglacial periods, and this is a significant step toward connecting climate change in low-latitudes to high-latitude glaciation during the LPIA.


2020 ◽  
Vol 177 (6) ◽  
pp. 1107-1128 ◽  
Author(s):  
Miguel Ezpeleta ◽  
Juan José Rustán ◽  
Diego Balseiro ◽  
Federico Miguel Dávila ◽  
Juan Andrés Dahlquist ◽  
...  

The Late Paleozoic Ice Age (LPIA) has been well recorded in the uppermost Mississippian–Pennsylvanian of Gondwana. Nevertheless, little is known about the temporal and geographic dynamics, particularly during the early Mississippian. We report on exceptional Tournaisian glaciomarine stratigraphic sections from central Argentina (Río Blanco Basin). Encompassing c. 1400 m, these successions contain conspicuous glacigenic strata with age constraints provided by palaeontological data and U/Pb detrital zircon age spectra. A variety of marine, glaciomarine and fan-deltaic environments indicate relative sea-level variations mainly associated with tectonism and repetitive cycles of glacial activity. Provenance analysis indicates a source from the Sierras Pampeanas basement located to the east. Fifteen sequences were grouped into three depositional models: (1) Transgressive Systems Tracts (TST) to Highstand Systems Tracts (HST) sequences unaffected by glacial ice; (2) Lowstand Systems Tracts (LST) to TST and then to HST with glacial influence; and (3) non-glacial Falling-Stage Systems Tracts (FSST) to TST and HST. The glacial evidence indicates that the oldest Mississippian glacial stage of the LPIA in southwestern Gondwana is constrained to the middle Tournaisian. In contrast with previous descriptions of Gondwanan coeval glacial records, our sequence analysis confirms complex hierarchical climate variability, rather than a single episode of ice advance and retreat.Supplementary material: Detailed stratigraphic sections, palaeocurrents and compositional analysis and U/Pb detrital Zr methodology and data are available at: https://doi.org/10.6084/m9.figshare.c.5011424


2012 ◽  
Vol 8 (3) ◽  
pp. 1915-1972 ◽  
Author(s):  
N. G. Heavens ◽  
N. M. Mahowald ◽  
G. S. Soreghan ◽  
M. J. Soreghan ◽  
C. A. Shields

Abstract. The Late Paleozoic Ice Age (LPIA), the Earth's penultimate "icehouse climate", was a critical time in the history of biological and ecological evolution. Many questions remain about the connections between high-latitude glaciation in Gondwanaland and low-latitude precipitation variability in Pangaea. We have simulated the Earth's climate during Asselian-Sakmarian time (299–284 Ma) with the Community Climate System Model version 3 (CCSM3), a coupled dynamic atmosphere-ocean-land-sea-ice model. Our simulations test the sensitivity of the model climate to direct and indirect effects of glaciation as well as variability in the Earth's orbit. Our focus is on precipitation variability in tropical (30° S–30° N) Pangaea, where there has been the most interpretation of glacial-interglacial climate change during the LPIA. The results of these simulations suggest that glacials generally were drier than interglacials in tropical Pangaea, though exceptional areas may have been wetter, depending on location and the mode of glaciation. Lower sea level, an indirect effect of changes in glacial extent, appears to reduce tropical Pangaean precipitation more than the direct radiative/topographic effects of high-latitude glaciation. Glaciation of the Central Pangaean Mountains would have greatly reduced equatorial Pangaean precipitation, while perhaps enhancing precipitation at higher tropical latitudes and in equatorial rain shadows. Variability evident in strata with 5th order stratigraphic cycles may have resulted from precipitation changes owing to precession forcing of monsoon circulations and would have differed in character between greenhouse and icehouse climates.


2016 ◽  
Author(s):  
Matthew G. Powell ◽  
◽  
Ian-Michael Taylor-Benjamin

2017 ◽  
Author(s):  
Kate M. Gigstad ◽  
◽  
Margaret L. Fraiser ◽  
John L. Isbell ◽  
Lydia T. Albright ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document