Paleoecology Of Early-Middle Permian Marine Communities In Eastern Australia: Response To Global Climate Change In the Aftermath Of the Late Paleozoic Ice Age

Palaios ◽  
2008 ◽  
Vol 23 (11) ◽  
pp. 738-750 ◽  
Author(s):  
M. E. Clapham ◽  
N. P. James
2021 ◽  
Author(s):  
Peixin Zhang ◽  
Jing Lu ◽  
Minfang Yang ◽  
Longyi Shao ◽  
Ziwei Wang ◽  
...  

Abstract. The Late Paleozoic Ice Age (LPIA; ca. 360–260 million years ago) was one of the most significant glacial events in Earth history that records cycles of ice advance and retreat in southern high-latitude Gondwana and provides a deep-time perspective for climate-glaciation coevolution. However, climate records from the LIPA are poorly understood in low latitudes, particularly in the North China Plate (NCP) on the eastern Palaeo-Tethys. We address this through a detailed mineralogical study of the marine-continental sedimentary succession in the Yuzhou Coalfield from the southern NCP in which we apply Zircon U-Pb dating, biostratigraphy, and high-resolution clay mineral composition to reconstruct latest Carboniferous to early Permian chronostratigraphy and climate change. The Benxi, Taiyuan, and Shanxi formations in the study area are assigned to the Gzhelian, Asselian-Artinskian, and Kungurian-Roadian stages respectively and the Carboniferous Permian lithostratigraphy across NCP recognized as widely diachronous. Detrital micromorphology of kaolinite under scanning electron microscopy and illite crystallization indicates kaolinite contents to be a robust proxy for palaeoclimate reconstruction. Kaolinite data show alternating warm-humid and cool-humid climate conditions that are roughly consistent with the calibrated glacial-interglacial successions recognized in high-latitude eastern Australia, including the glaciations P1 (Asselian-early Sakmarian) and P2 (late Sakmarian-early Artinskian), as well as the climatic transition to glaciation P3 (Roadian). Our results indicate a comparatively cool-humid and warm-humid climate mode in low-latitude NCP during glacial and interglacial periods, and this is a significant step toward connecting climate change in low-latitudes to high-latitude glaciation during the LPIA.


2015 ◽  
Vol 21 (2) ◽  
pp. 308-317
Author(s):  
Eric Gilder ◽  
Dilip K. Pal

Abstract It is vital for security experts to learn from the historical records of global climate change as to how the human society has been impacted by its consequences in the “new” Anthropocene Epoch. Some of these consequences of global climate change include the perishing of several human settlements in different parts of the globe at different times, e.g., in 1700 B.C., prolonged drought contributed to the demise of Harappan civilization in northwest India. In 1200 B.C., under a similar climatic extremity, the Mycenaean civilization in present-day Greece (as well as the Mill Creek culture of the northwestern part of the present-day US state of Iowa) perished. Why did some societies under such climatic events perish while others survived? Lack of preparedness of one society and its failure to anticipate and adapt to the extreme climatic events might have attributed to their extinction. The authors will also analyze the extinction of one European Norse society in Greenland during the Little Ice Age (about 600 years ago), as compared to the still-surviving Inuit society in the northern segment of Greenland, which faced even harsher climatic conditions during the Little Ice Age than the extinct Norsemen. This is how the adaptability and “expectation of the worst” matter for the survival of a particular community against climatic “black swan” events (Taleb, 2007). Similar impacts in terms of sea-level rise expected by the year 2100 whereby major human populations of many parts of the world are expected to lose their environmental evolutionary “niche” will be discussed. Rising temperature will not only complicate human health issues, but also will it take its toll on the staple food producing agricultural belts in some latitudinal expanse. It will also worsen the living condition of the populace living in areas where climate is marginal. Through the Socio-Economic Systems Model provided by Vadineanu (2001), the authors will next consider the effect of extant policy-making “prisms” responding to climate change (such as the “Club of Rome” versus the “Club for Growth” visions) as concerns the ongoing process of globalization and survival of the nation-state.


Author(s):  
Thomas S. Bianchi

The Pleistocene Epoch, often referred to as the Ice Age, lasted from approximately 2.6 million to 11,700 years ago. The last major ice advance began about 110,000 years ago, and the most recent episode of maximum ice coverage, the Last Glacial Maximum, began about 26,500 years ago and ended approximately 19,000 years ago. Thereafter, glacier retreat began, largely ending by about 11,700 years ago. That marked the beginning of the Holocene interglacial geologic epoch, which continues to the present. During the last glacial period, sea level was much lower because so much water was locked up in ice sheets, largely at the poles. This lowering of the sea level exposed the margins of the continents (the continental shelves) around the world. When the Ice Age ended, sea level started to rise during the deglacial period, a process that continued into the Holocene. Deltaic regions received meltwaters from the thawing glaciers, along with glacier- derived sediments. Of particular note in the late Holocene is a climate episode called the Medieval Warm Period, originally identified by the English botanist Hubert Lamb. The Medieval Warm Period was a time of warm climate in the North Atlantic region and may have also impacted other areas around the world. It lasted from about the years 950 to 1250. Later in this chapter, I will discuss this climate anomaly, along with something called the “Hockey Stick” debate, which relates to exceptional warming during recent centuries of the Holocene (i.e., global warming). In any case, all modern and paleodeltas formed during periods of peak sea level in the Holocene. These new deltas had fertile soils that were constantly irrigated by the flow of fresh water, which promoted early settlement by humans. So, the Holocene started near the end of the retreat of the Pleistocene glaciers, and human civilizations arose entirely in the Holocene Epoch. To view the Holocene, simply look around you today. In this chapter, I will explore the natural and human-induced causes of global climate change and how they impact deltaic regions.


Author(s):  
Diwaker Pandey

Climate-Change affecting unfavorably because of upward push in worldwide temperature alteration and that too alarmingly. Ancient Air bubbles buried in Antarctic Ice to shed more light on Global Warming. It has happened in the North-Atlantic and may happen again. According to scientists, a dangerous atmospheric deviation could prompt prolonged chill and move the Earth towards a brand new age and a new defined climate that would be an effect of the worldwide environmental change. On such conditions James White, a geography educator at Colorado University, Boulder, not engaged with the investigation, said that albeit the ice-age proof showed that degrees of CO2 and further ozone harming substances rose and fell in reaction to heating and cooling , the gases could clearly take the lead as well. Global Climate withinside the fresh past: In the 90’s decades there has stood an experience and witnessing of the extremes of various weather events. In the warmer temperature of century was recorded and a share of the majority noticeably terrible floods all in the course of the planet. The one such inconstancy is the staggering dry period in the Sahel-area which lies in South-of-Sahara desert, from 1967-1977. During the 1930’s there were severe drought that occurred in the south-western Great Plains of the U.S which was described as DUST BOWL. The after-effects of the Global-Climate-Change are severe and tell us about the various impacts. They are:- A. Crop yield or Crop failures, B. Floods, C. Migration of people. These are various influences of the Global-Climate-Change that effect the biosphere from many ways as Climate-Change directly affects the biosphere which is the only sphere wherein lifestyle exists and where life can exist.


2021 ◽  
Vol 91 (6) ◽  
pp. 611-635
Author(s):  
Libby R.W. Ives ◽  
John L. Isbell

ABSTRACT The currently favored hypothesis for Late Paleozoic Ice Age glaciations is that multiple ice centers were distributed across Gondwana and that these ice centers grew and shank asynchronously. Recent work has suggested that the Transantarctic Basin has glaciogenic deposits and erosional features from two different ice centers, one centered on the Antarctic Craton and another located over Marie Byrd Land. To work towards an understanding of LPIA glaciation that can be tied to global trends, these successions must be understood on a local level before they can be correlated to basinal, regional, or global patterns. This study evaluates the sedimentology, stratigraphy, and flow directions of the glaciogenic, Asselian–Sakmarian (Early Permian) Pagoda Formation from four localities in the Shackleton Glacier region of the Transantarctic Basin to characterize Late Paleozoic Ice Age glaciation in a South Polar, basin-marginal setting. These analyses show that the massive, sandy, clast-poor diamictites of the Pagoda Fm were deposited in a basin-marginal subaqueous setting through a variety of glaciogenic and glacially influenced mechanisms in a depositional environment with depths below normal wave base. Current-transported sands and stratified diamictites that occur at the top of the Pagoda Fm were deposited as part of grounding-line fan systems. Up to at least 100 m of topographic relief on the erosional surface underlying the Pagoda Fm strongly influenced the thickness and transport directions in the Pagoda Fm. Uniform subglacial striae orientations across 100 m of paleotopographic relief suggest that the glacier was significantly thick to “overtop” the paleotopography in the Shackleton Glacier region. This pattern suggests that the glacier was likely not alpine, but rather an ice cap or ice sheet. The greater part of the Pagoda Fm in the Shackleton Glacier region was deposited during a single retreat phase. This retreat phase is represented by a single glacial depositional sequence that is characteristic of a glacier with a temperate or mild subpolar thermal regime and significant meltwater discharge. The position of the glacier margin likely experienced minor fluctuations (readvances) during this retreat. Though the sediment in the Shackleton Glacier region was deposited during a single glacier retreat phase, evidence from this study does not preclude earlier or later glacier advance–retreat cycles preserved elsewhere in the basin. Ice flow directions indicate that the glacier responsible for this sedimentation was likely flowing off of an upland on the side of the Transantarctic Basin closer to the Panthalassan–Gondwanide margin (Marie Byrd Land), which supports the hypothesis that two different ice centers contributed glaciogenic sediments to the Transantarctic Basin. Together, these observations and interpretations provide a detailed local description of Asselian–Sakmarian glaciation in a South Polar setting that can be used to understand larger-scale patterns of regional and global climate change during the Late Paleozoic Ice Age.


Sign in / Sign up

Export Citation Format

Share Document