scholarly journals Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle

2007 ◽  
Vol 3 (3) ◽  
pp. 423-438 ◽  
Author(s):  
A. Abe-Ouchi ◽  
T. Segawa ◽  
F. Saito

Abstract. The ice sheet-climate interaction as well as the climatic response to orbital parameters and atmospheric CO2 concentration are examined in order to drive an ice sheet model throughout an ice age cycle. Feedback processes between ice sheet and atmosphere are analyzed by numerical experiments using a high resolution General Circulation Model (GCM) under different conditions at the Last Glacial Maximum. Among the proposed processes, the ice albedo feedback, the elevation-mass balance feedback and the desertification effect over the ice sheet were found to be the dominant processes for the ice-sheet mass balance. For the elevation-mass balance feedback, the temperature lapse rate over the ice sheet is proposed to be weaker than assumed in previous studies. Within the plausible range of parameters related to these processes, the ice sheet response to the orbital parameters and atmospheric CO2 concentration for the last glacial/interglacial cycle was simulated in terms of both ice volume and geographical distribution, using a three-dimensional ice-sheet model. Careful treatment of climate-ice sheet feedback is essential for a reliable simulation of the ice sheet changes during ice age cycles.

2007 ◽  
Vol 3 (1) ◽  
pp. 301-336 ◽  
Author(s):  
A. Abe-Ouchi ◽  
T. Segawa ◽  
F. Saito

Abstract. The ice sheet-climate interaction as well as the climatic response to orbital parameters and atmospheric CO2 content are examined in order to drive an ice sheet model throughout an ice age cycle. Feedback processes between ice sheet and atmosphere are analyzed by numerical experiments using a high resolution General Circulation Model (GCM) under different conditions at the Last Glacial Maximum. Among the proposed processes, the ice albedo feedback, the elevation-mass balance feedback and the desertification effect over ice sheet were found to be the dominant processes for the ice-sheet mass balance. The temperature lapse rate over the ice sheet is proposed to be about 5 °C km–1, which is weaker than assumed in other studies. Within the plausible range of parameters related to these processes, the ice sheet response to orbital parameters and atmospheric CO2 content for the last glacial/interglacial cycle was simulated in terms of both ice volume and geographical distribution, using a three-dimensional ice-sheet model. Careful treatment related to climate-ice sheet feedback is essential for a reliable simulation of ice sheet changes during ice age cycles.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


2009 ◽  
Vol 5 (2) ◽  
pp. 1013-1053 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity fully coupled with a 3-dimensional thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


Nature ◽  
10.1038/32133 ◽  
1998 ◽  
Vol 392 (6671) ◽  
pp. 59-62 ◽  
Author(s):  
B. Stauffer ◽  
T. Blunier ◽  
A. Dällenbach ◽  
A. Indermühle ◽  
J. Schwander ◽  
...  

2021 ◽  
Author(s):  
Lauren Gregoire ◽  
Niall Gandy ◽  
Lachlan Astfalck ◽  
Robin Smith ◽  
Ruza Ivanovic ◽  
...  

<p>Simulating the co-evolution of climate and ice-sheets during the Quaternary is key to understanding some of the major abrupt changes in climate, ice and sea level. Indeed, events such as the Meltwater pulse 1a rapid sea level rise and Heinrich, Dansgaard–Oeschger and the 8.2 kyr climatic events all involve the interplay between ice sheets, the atmosphere and the ocean. Unfortunately, it is challenging to simulate the coupled Climate-Ice sheet system because small biases, errors or uncertainties in parts of the models are strongly amplified by the powerful interactions between the atmosphere and ice (e.g. ice-albedo and height-mass balance feedbacks). This leads to inaccurate or even unrealistic simulations of ice sheet extent and surface climate. To overcome this issue we need some methods to effectively explore the uncertainty in the complex Climate-Ice sheet system and reduce model biases. Here we present our approach to produce ensemble of coupled Climate-Ice sheet simulations of the Last Glacial maximum that explore the uncertainties in climate and ice sheet processes.</p><p>We use the FAMOUS-ICE earth system model, which comprises a coarse-resolution and fast general circulation model coupled to the Glimmer-CISM ice sheet model. We prescribe sea surface temperature and sea ice concentrations in order to control and reduce biases in polar climate, which strongly affect the surface mass balance and simulated extent of the northern hemisphere ice sheets. We develop and apply a method to reconstruct and sample a range of realistic sea surface temperature and sea-ice concentration spatio-temporal field. These are created by merging information from PMIP3/4 climate simulations and proxy-data for sea surface temperatures at the Last Glacial Maximum with Bayes linear analysis. We then use these to generate ensembles of FAMOUS-ice simulations of the Last Glacial maximum following the PMIP4 protocol, with the Greenland and North American ice sheets interactively simulated. In addition to exploring a range of sea surface conditions, we also vary key parameters that control the surface mass balance and flow of ice sheets. We thus produce ensembles of simulations that will later be used to emulate ice sheet surface mass balance.  </p>


2000 ◽  
Vol 30 ◽  
pp. 163-176 ◽  
Author(s):  
W. Richard Peltier ◽  
David L. Goldsby ◽  
David L. Kohlstedt ◽  
Lev Tarasov

AbstractState-of-the-art thermomechanical models of the modern Greenland ice sheet and the ancient Laurentide ice sheet that covered Canada at the Last Glacial Maximum (LGM) are not able to explain simultaneously the observed forms of these cryospheric structures when the same, anisotropy-enhanced, version of the conventional Glen flow law is employed to describe their rheology. The LGM Laurentide ice sheet, predicted to develop in response to orbital climate forcing, is such that the ratio of its thickness to its horizontal extent is extremely large compared to the aspect ratio inferred on the basis of surface-geomorphological and solid-earth-geophysical constraints. We show that if the Glen flow law representation of the rheology is replaced with a new rheology based upon very high quality laboratory measurements of the stress-strain-rate relation then the aspect ratios of both the modern Greenland ice sheet and the Laurentide ice sheet, that existed at the LGM, are simultaneously explained with little or no retuning of the flow law.


2011 ◽  
Vol 7 (3) ◽  
pp. 1767-1795 ◽  
Author(s):  
V. Brovkin ◽  
A. Ganopolski ◽  
D. Archer ◽  
G. Munhoven

Abstract. During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that had led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. A computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum by 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve with time: changes in sea surface temperatures and in the volume of bottom water of southern origin controls atmospheric CO2 during the glacial inception and deglaciation, while changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.


2010 ◽  
Vol 6 (2) ◽  
pp. 229-244 ◽  
Author(s):  
A. Ganopolski ◽  
R. Calov ◽  
M. Claussen

Abstract. A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH) ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.


2009 ◽  
Vol 5 (5) ◽  
pp. 2269-2309 ◽  
Author(s):  
A. Ganopolski ◽  
R. Calov ◽  
M. Claussen

Abstract. A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically based surface energy and mass-balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH) ice sheets, including rapid glacial inception, strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.


Sign in / Sign up

Export Citation Format

Share Document