earth environment
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
pp. 1-11
Author(s):  
Seyed Mohammad Hosseini ◽  
Fatemeh Fathpour ◽  
Subhrajit Chanda

The Soviet Union successfully launched Sputnik I in 1957 which led to the era of space activities. Although human race has benefited numerous from space activities, unlimited use of outer space has caused pollutions in outer space and consequently at the earth environment. Space debris has become a threat to the security of space activities. Space debris is the most important of these pollutions that, not only creates numerous threats and risks for Orbiting Satellites, It also has harmful effects on earth environment. During drafting UN space treaties, little attention was paid to environmental problems and these treaties did not mentioned of space debris and its hazards. in recent decades, Ethics of Outer Space activities, paid more attention to the environment of outer space and environmental issue of space activities. Therefore, the experiences of environmental law and its preventive policies can be used to reduce the threat of space debris for peaceful space activities and the environment of space and planet Earth.


2021 ◽  
Vol 10 (10) ◽  
pp. 667
Author(s):  
Qingtong Shi ◽  
Bo Ai ◽  
Yubo Wen ◽  
Wenjun Feng ◽  
Chenxi Yang ◽  
...  

In three-dimensional (3D) digital Earth environment, there are many problems when using the existing methods to express the ocean current, such as uneven distribution of seed points, density leap in scale change and messy visualization. In this paper, a new dynamic visualization method of multi-hierarchy flow field based on particle system is proposed; Specifically, three typical spherical uniform algorithms are studied and compared, and the streamline becoming denser from the equator to the poles on globe is eliminated by placing seed points using Marsaglia polar method as the most efficient. In addition, a viewport-adaptive adjustment algorithm is proposed, which realizes that the density of particles is always suitable to any viewing distance during continuous zooming. To solve the visual representation deficiency, we design a new dynamic pattern to enhance the expression and perception of current, which makes up for the shortcoming of the arrow glyph and streamline methods. Finally, a prototype of GPU parallel and viewport coherence is achieved, whose feasibility and effectiveness are verified by a series of experiments. The results show that our method can not only represent ocean current data clearly and efficiently, but also has outstanding uniformity and hierarchy effect.


Soundings ◽  
2021 ◽  
Vol 78 (78) ◽  
pp. 81-85
Author(s):  
Susmita Mohanty

Space debris has reached alarming proportions and is growing at a frightening pace, because of the expanding number of satellites circulating in Low Earth Orbit (LEO), designed to increase global Internet coverage and provide earth observation data. LEO satellites are now being launched in mega-constellations, including by Elon Musk's company SpaceX. It is time to completely overhaul the 1967 Outer Space Treaty, which was not designed to deal with current problems. The COP forum should therefore include the near-earth environment within its concept of the earth's climate, enabling the UN to acknowledge, as a collective, the growing menace of human-made debris in near-earth space, and, in partnership with the UN-Outer Space Affairs Office (UN-OOSA), call for a new declaration on LEO.


2021 ◽  
Author(s):  
Rebecca Guth-Metzler ◽  
Ahmad Mohyeldin Mohamed ◽  
Elizabeth T Cowan ◽  
Moran Frenkel-Pinter ◽  
Roger Wartell ◽  
...  

Mg2+, the most abundant divalent cation in cells, catalyzes RNA cleavage but can also promote RNA folding. Because folding can protect RNA from cleavage, we predicted a "Goldilocks zone", which is a local maximum in RNA lifetime at the minimum Mg2+ concentration required for folding. By simulation and experiment, we characterized the RNA Goldilocks zone and its dependence on cleavage parameters and extent of folding. We show experimentally that yeast tRNAPhe can inhabit a Goldilocks zone. The Goldilocks phenomena appears to be robust and is tunable by changes in magnesium affinity, and a variety of other factors. Goldilocks behavior can be more pronounced for RNAs with intermediate folding states. Goldilocks behavior allows ultrafine control of RNA chemical lifetime. A subset of RNAs in vivo are expected to occupy the Goldilocks zone. In evolutionary context, Goldilocks behavior may have shaped RNA in an early Earth environment containing Mg2+ and other metals. RNAs that do not fold cannot access a Goldilocks zone.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 801
Author(s):  
Vsevolod Yutsis ◽  
Yuriy Rapoport ◽  
Volodymyr Grimalsky ◽  
Asen Grytsai ◽  
Vasyl Ivchenko ◽  
...  

The problem with the penetration of electric fields from atmospheric near-Earth electric current sources to the ionosphere is investigated both within the dynamic simulations of the Maxwell equations in the frequency domain and within the simplified quasi-electrostatic approach. Two cases of the geomagnetic field lines are considered. The first case is the penetration of the geomagnetic field lines deeply into the magnetosphere (open field lines), whereas the second one is the return of these lines into the Earth’s surface (closed field lines). The proper boundary conditions are formulated. It is demonstrated that in the case of the open field lines the results of the dynamic simulations differ essentially from the quasi-electrostatic approach, which is not valid there. In the case of the closed field lines, the results of simulations are practically the same both within the dynamic approach and within the quasi-electrostatic one. From realistic values of the densities of atmospheric electric currents ~0.1 µA/m2, the values of the electric fields within the ionosphere F-layer may reach about 1–10 mV/m.


2021 ◽  
Author(s):  
Eija Tanskanen ◽  
Tero Raita ◽  
Joni Tammi ◽  
Jouni Pulliainen ◽  
Hannu Koivula ◽  
...  

<p>The near-Earth environment is continuously changing by disturbances from external and internal sources. A combined research ecosystem is needed to be able to monitor short- and long-term changes and mitigate their societal effects. Observatories and large-scale infrastructures are the best way to guarantee continuous 24/7 observations and full-scale monitoring capability. Sodankylä Geophysical Observatory takes care of continuous geoenvironmental monitoring in Finland and together with national infrastructures such as FIN-EPOS and E2S enable extending and expanding the monitoring capability. European Plate Observing System of Finland (FIN-EPOS) and flexible instrument network of FIN-EPOS (FLEX-EPOS) will create a national pool of instruments including geophysical instruments targeted for solving topical questions of solid Earth physics. Scientific and new hardware building by FLEX-EPOS is essential in order to identify and reduce the impact of seismic, magnetic and geodetic hazards and understand the underlying processes.</p><p> </p><p>New national infrastructure Earth-Space Research Ecosystem (E2S) will combine measurements from atmosphere to near-Earth and distant space. This combined infrastructure will enable resolving how the Arctic environment change over the seasons, years, decades and centuries. We target our joint efforts to improve the situational awareness in the near-Earth and space environments, and in the Arctic for enhancing safety on ground and in space. This presentation will give details on the large-scale Earth-space infrastructures and research ecosystems and will give examples on how they can improve the safety of society.</p>


2021 ◽  
Author(s):  
Die Duan ◽  
Jiansen He ◽  
Xingyu Zhu ◽  
Daniel Verscharen ◽  
Trevor Bowen ◽  
...  

<div> <div>The 4th encounter (~30 Rs away from the sun) of the Parker Solar Probe (PSP) is a great opportunity to observe the radial evolution of the solar wind from the inner heliosphere to the near-earth environment when the sun, PSP, and the earth are quasi-radial aligned. Similar features of the solar wind are observed from both PSP and Wind (at 1 au) measurements. The accelerating-solar-wind model could be more suitable than the constant speed model for the observation, which means the solar wind is still accelerating from 30 Rs to 1 au. Both PSP and Wind measure the co-existence of the Alfvenic and compressive fluctuations in the solar wind. The correlated radial velocity (dVR), proton density (dn) and temperature (dT) fluctuations indicate the nature of the compressive fluctuations are outward-propagating slow waves. However, dn and dB is not correlated from PSP, but correlated from Wind, which indicates the propagating direction of the slow waves is changed. Comparing the radial evolution of the energies of both Alfvenic and compressive fluctuations with the WKB model, we find the observed energy decays slower than the theoretical prediction, which indicates an extra energy injection during the solar wind propagation.</div> <!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6Ijk2NDAtMTYxMTEwNTcwNDAwNyIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJUIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiNCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiIoIn0seyJjaGFyIjoifiJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIwIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiKSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IigifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJTIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiKCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoicyJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiVCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJjIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJnIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMyJ9LHsiY2hhciI6IjAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUiJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiMSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Ii4ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiQiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IngifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImMifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn1dLCJpc1JpY2hUZXh0Ijp0cnVlLCJrZWVwTGluZUJyZWFrIjp0cnVlfX1d--></div><p><!--5f39ae17-8c62-4a45-bc43-b32064c9388a:W3siYmxvY2tJZCI6Ijk2NDAtMTYxMTEwNTcwNDAwNyIsImJsb2NrVHlwZSI6InBhcmFncmFwaCIsInN0eWxlcyI6eyJhbGlnbiI6ImxlZnQiLCJpbmRlbnQiOjAsInRleHQtaW5kZW50IjowLCJsaW5lLWhlaWdodCI6MS43NSwiYmFjay1jb2xvciI6IiIsInBhZGRpbmciOiIifSwidHlwZSI6InBhcmFncmFwaCIsInJpY2hUZXh0Ijp7ImRhdGEiOlt7ImNoYXIiOiJUIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiNCJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiYyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoibiJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiIoIn0seyJjaGFyIjoifiJ9LHsiY2hhciI6IjMifSx7ImNoYXIiOiIwIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiKSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiayJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IigifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InAifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InkifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImIifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJ2In0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJmIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImwifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJwIn0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoibyJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Ii0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6InYifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJ3In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJzIn0seyJjaGFyIjoidSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiIsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiJTIn0seyJjaGFyIjoiUCJ9LHsiY2hhciI6IiwifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InQifSx7ImNoYXIiOiJoIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoicSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiItIn0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiaSJ9LHsiY2hhciI6ImcifSx7ImNoYXIiOiJuIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIuIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlMifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibSJ9LHsiY2hhciI6ImkifSx7ImNoYXIiOiJsIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiZiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJhIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoidCJ9LHsiY2hhciI6ImgifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJvIn0seyJjaGFyIjoibCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IncifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InIifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJiIn0seyJjaGFyIjoicyJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoidiJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6ImYifSx7ImNoYXIiOiJyIn0seyJjaGFyIjoibyJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYiJ9LHsiY2hhciI6Im8ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiaCJ9LHsiY2hhciI6IiAifSx7ImNoYXIiOiJQIn0seyJjaGFyIjoiUyJ9LHsiY2hhciI6IlAifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJkIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6IlcifSx7ImNoYXIiOiJpIn0seyJjaGFyIjoibiJ9LHsiY2hhciI6ImQifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiKCJ9LHsiY2hhciI6ImEifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoiICJ9LHsiY2hhciI6IjEifSx7ImNoYXIiOiIgIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InUifSx7ImNoYXIiOiIpIn0seyJjaGFyIjoiICJ9LHsiY2hhciI6Im0ifSx7ImNoYXIiOiJlIn0seyJjaGFyIjoiYSJ9LHsiY2hhciI6InMifSx7ImNoYXIiOiJ1In0seyJjaGFyIjoiciJ9LHsiY2hhciI6ImUifSx7ImNoYXIiOiJtIn0seyJjaGFyIjoiZSJ9LHsiY2hhciI6Im4ifSx7ImNoYXIiOiJ0In0seyJjaGFyIjoicyJ9LHsiY2hhciI6Ii4ifV0sImlzUmljaFRleHQiOnRydWUsImtlZXBMaW5lQnJlYWsiOnRydWV9fV0=--></p>


2021 ◽  
Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja ◽  

<p>The JWG3 aims at investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will also be considered since these could be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data are also to be investigated, in particular the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates.</p><p>Furthermore, existing algorithms for the detection and prediction of space weather events shall be explored and improved to the extent possible. Additionally, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets from different space geodetic observation techniques (e.g., geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC), provide additional opportunities for comparisons and validation.</p><p>As per JWG3 objectives, these include the identification of the key parameters useful to improve real time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we are on the way to gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>


Sign in / Sign up

Export Citation Format

Share Document