scholarly journals Tropical cooling and the onset of North American glaciation

2007 ◽  
Vol 3 (3) ◽  
pp. 549-557 ◽  
Author(s):  
P. Huybers ◽  
P. Molnar

Abstract. We offer a test of the idea that gradual cooling in the eastern tropical Pacific led to cooling of North America and the initiation of glaciation ~3 Myr ago. Using modern climate data we estimate how warming of the eastern tropical Pacific affects North American temperature and ice-ablation. Assuming that the modern relationship holds over the past millions of years, a ~4°C warmer eastern tropical Pacific between 3–5 Ma would increase ablation in northern North America by approximately two meters per year. By comparison, a similar estimate of the ablation response to variations in Earth's obliquity gives less than half the magnitude of the tropically-induced change. Considering that variations in Earth's obliquity appear sufficient to initiate glaciations between ~1–3 Ma, we infer that the warmer eastern equatorial Pacific prior to 3 Ma suffices to preclude glaciation.

2007 ◽  
Vol 3 (3) ◽  
pp. 771-789 ◽  
Author(s):  
P. Huybers ◽  
P. Molnar

Abstract. We offer a test of the idea that gradual cooling in the eastern tropical Pacific led to cooling of North America and the initiation of glaciation ~3 Myr ago. Using modern climate data we estimate how warming of the eastern tropical Pacific affects North American temperature and ice-ablation. Assuming that the modern relationship holds over the past millions of years, an eastern tropical Pacific warmer by ~4° between 3–5 Ma would increase ablation in northern North America by approximately two meters per year. By comparison, a similar estimate of the ablation response to variations in Earth's obliquity gives less than half the magnitude of the tropically-induced change. Considering that variations in Earth's obliquity appear sufficient to initiate glaciations between ~1–3 Ma, we infer that the warmer eastern equatorial Pacific prior to 3 Ma suffices to preclude glaciation.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2016 ◽  
Vol 31 (3) ◽  
pp. 438-457 ◽  
Author(s):  
Katie Kilroy-Marac

Within the past decade, material disorder—especially that of the domestic variety—has come to stand alternately as evidence, symptom, and potential cause of mental disorder in the North American popular and psychiatric imagination. Sources ranging from the newly defined Hoarding Disorder diagnosis in the DSM-V, to popular media, to agents of the burgeoning clutter-management industry describe disorder in terms of an irrational attachment, closeness, or overidentification with objects. At the same time, these sources imagine order to result from the cool distance and controlled passion a person is able to maintain toward his or her possessions. Drawing on more than twenty interviews and numerous fieldwork encounters with professional organizers (POs) in Toronto between 2014 and 2015, this article describes how POs aim to reorient their clients materially, morally, and affectively to relieve the disorder they report in their lives. Here, I argue, POs emerge as a species of late capitalist healer whose interventions are animated by a paradoxical double movement. For just as POs act to loosen the object attachments and disrupt the “secret sympathy” their clients share with their possessions, they operate within a realm of magical correspondence where matter and mind are imagined to reflect and affect one another, and where bringing order to a client’s possessions means also bringing order to his or her mind.


2021 ◽  
Vol 2 (2) ◽  
pp. 395-412
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of tropical Pacific sea surface temperature (SST) variability on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 d band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean SST over the tropical Pacific. We find that the El Niño–Southern Oscillation (ENSO) explains a dominant fraction of the year-to-year changes in subseasonal SAT variability that are covarying with SST and thus likely more predictable. In agreement with previous studies, we find a tendency for La Niña conditions to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion during La Niña. Structural changes of these eddies are crucial to enhance the efficiency of the energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The enhanced likelihood of cold extremes over western North America is associated with both an increased subseasonal SAT variability and the cold winter-mean response to La Niña.


2003 ◽  
Vol 18 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Howard J. Spero ◽  
Koreen M. Mielke ◽  
Erica M. Kalve ◽  
David W. Lea ◽  
Dorothy K. Pak

2020 ◽  
Vol 16 (1) ◽  
pp. 199-209 ◽  
Author(s):  
Yongyun Hu ◽  
Yan Xia ◽  
Zhengyu Liu ◽  
Yuchen Wang ◽  
Zhengyao Lu ◽  
...  

Abstract. The Pacific–North American (PNA) teleconnection is one of the most important climate modes in the present climate condition, and it enables climate variations in the tropical Pacific to exert a significant influence on North America. Here, we show climate simulations in which the PNA teleconnection was largely distorted or broken at the Last Glacial Maximum (LGM). The distorted PNA is caused by a split in the westerly jet stream, which is ultimately forced by the large, thick Laurentide ice sheet that was present at the LGM. Changes in the jet stream greatly alter the extratropical waveguide, distorting wave propagation from the North Pacific to North America. The distorted PNA suggests that climate variability in the tropical Pacific, notably El Niño–Southern Oscillation (ENSO), would have little direct impact on North American climate at the LGM.


Author(s):  
Robert R. Richwine ◽  
G. Scott Stallard ◽  
G. Michael Curley

In recent years some power companies have instituted programs aimed at reducing or eliminating their power plants’ unreliability caused by abnormal events that occur infrequently but result in extended unplanned outages when they do occur, i.e. High Impact–Low Probability events (HILPs). HILPs include catastrophic events such as turbine water induction, boiler explosions, generator winding failures, etc. Many of these successful programs have relied on the detailed reliability data contained in the North American Electric Reliability Corporation’s (NERC) Generating Availability Data System (GADS) that contains data collected over the past 25 years from 5000+ generating units in North America. Using this data, these companies have been able to 1) benchmark their fleet’s unreliability due to HILPs against their North American peers, 2) prioritize their peer group’s susceptibility to various HILP modes and 3) use root cause data contained within the NERC-GADS data base to help identify and evaluate ways to proactively prevent, detect and/or mitigate the consequences of HILP events. This paper will describe the methods used in these successful programs in sufficient detail to enable others to adopt the techniques for application at their own generating plants.


2017 ◽  
Vol 114 (13) ◽  
pp. 3340-3345 ◽  
Author(s):  
Zhongfang Liu ◽  
Yanlin Tang ◽  
Zhimin Jian ◽  
Christopher J. Poulsen ◽  
Jeffrey M. Welker ◽  
...  

Land and sea surface temperatures, precipitation, and storm tracks in North America and the North Pacific are controlled to a large degree by atmospheric variability associated with the Pacific North American (PNA) pattern. The modern instrumental record indicates a trend toward a positive PNA phase in recent decades, which has led to accelerated warming and snowpack decline in northwestern North America. The brevity of the instrumental record, however, limits our understanding of long-term PNA variability and its directional or cyclic patterns. Here we develop a 937-y-long reconstruction of the winter PNA based on a network of annually resolved tree-ring proxy records across North America. The reconstruction is consistent with previous regional records in suggesting that the recent persistent positive PNA pattern is unprecedented over the past millennium, but documents patterns of decadal-scale variability that contrast with previous reconstructions. Our reconstruction shows that PNA has been strongly and consistently correlated with sea surface temperature variation, solar irradiance, and volcanic forcing over the period of record, and played a significant role in translating these forcings into decadal-to-multidecadal hydroclimate variability over North America. Climate model ensembles show limited power to predict multidecadal variation in PNA over the period of our record, raising questions about their potential to project future hydroclimatic change modulated by this circulation pattern.


Sign in / Sign up

Export Citation Format

Share Document