Klimawirkung von Kondensstreifen-Zirren

2021 ◽  
Author(s):  
Marius Bickel ◽  
Michael Ponater ◽  
Ulrike Burkhardt ◽  
Lisa Bock

<p lang="de-DE">Auch in aktuellen Bewertungsstudien wird angenommen, dass Kondensstreifen-Zirren den größten Beitrag zur Klimawirkung des Luftverkehrs liefern. Bisher wurde die Klimawirkung von Kondensstreifen allerdings fast ausschließlich anhand von Strahlungsantrieben bewertet. Dabei konnte bereits gezeigt werden, dass der seit einigen Jahren als Bewertungsmetrik empfohlene „Effektive Strahlungsantrieb“ in diesem Fall erheblich kleiner ausfällt als bisher verwendete klassische Strahlungsantriebe. Die zu erwartende Temperaturänderung am Boden sollte demnach ebenfalls deutlich schwächer ausgeprägt sein als bisher angenommen.</p> <p lang="de-DE">Hier präsentieren wir Ergebnisse von globalen Klimamodellsimulationen mit gekoppeltem Deckschichtozean zur Berechnung der tatsächlichen Bodentemperaturänderung aufgrund von Kondensstreifen-Zirren. Neben der Klimasensitivität wurde damit auch erstmalig die Klimawirkungseffizienz von Kondensstreifen-Zirren bestimmt. Insgesamt fällt die Bodenerwärmung durch Kondensstreifen-Zirren erheblich kleiner aus als für ein CO<sub>2</sub> Erhöhungsexperiment mit vergleichbar großem klassischen Strahlungsantrieb. Die Klimawirkungseffizienz, basierend auf dem Effektiven Strahlungsantrieb, beträgt nur ca. ein Viertel des erwarteten Wertes. Somit wird die durch den Effektiven Strahlungsantrieb nahegelegte reduzierte Wirkung von Kondensstreifen-Zirren auf die bodennahe Temperatur sogar noch unterboten.</p> <p lang="de-DE">Zur Bestimmung der physikalischen Ursachen der verringerten Temperaturwirksamkeit wurden sowohl die schnellen als auch die langsamen Strahlungsrückkopplungen mit Hilfe einer Rückkopplungsanalyse nach dem „partial radiative perturbation“ Verfahren bestimmt. In beiden Fällen war die reduzierte Klimasensitivität der Kondensstreifen-Zirren vor allem auf eine negative Wolkenrückkopplung, bedingt durch die Reduktion von natürlicher Zirrusbewölkung, zurückzuführen.</p>

2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


2010 ◽  
Vol 23 (19) ◽  
pp. 5288-5293 ◽  
Author(s):  
Norman G. Loeb ◽  
Wenying Su

Abstract To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5–1.0 W m−2, a factor of 2–4 greater than the value cited in the Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear-sky conditions, even though the global mean clear-sky DARF is more than twice as large as the all-sky DARF.


1993 ◽  
Author(s):  
Michael A. Box ◽  
Peter E. Loughlin ◽  
Thomas Trautmann

1997 ◽  
Vol 102 (D4) ◽  
pp. 4333-4342 ◽  
Author(s):  
M. A. Box ◽  
P. E. Loughlin ◽  
M. Samaras ◽  
T. Trautmann

Sign in / Sign up

Export Citation Format

Share Document