Impulsfluss an vertikalen Wänden – Messung und Parametrisierung

2021 ◽  
Author(s):  
Akio Hansen ◽  
Felix Ament

<p>Der globale Klimawandel hat einen großen Einfluss auf das städtische Klima, wobei sich durch die hohe Bebauungsdichte und Versiegelung viele Effekte wie Hitzewellen zusätzlich verstärken. Damit unsere Städte auch in Zukunft lebenswerte Orte bleiben, müssen diese an die veränderten klimatischen Bedingungen angepasst werden. Um diese Anforderungen umzusetzen, können dank der gestiegenen Rechenkapazitäten vermehrt wirbel- und gebäudeauflösende Large-Eddy-Simulations-(LES) Modelle wie das PALM-4U (Maronga et al., 2015) in der Praxis zur Stadtplanung eingesetzt werden. Die in diesen Modellen verwendeten Annahmen und Parametrisierungen zum Windprofil sowie Impulsfluss an vertikalen Wänden von Gebäuden basieren jedoch mangels geeigneter Daten zumeist auf Grenzschichtmessungen über nahezu homogenen Flächen (Businger, 1971). Daher stellt sich die Frage, wie gut diese Annahmen an vertikalen Wänden zutreffen. Wie sehen das Windprofil und der Impulsfluss an einer realen Fassade aus?</p> <p>Zur Untersuchung dieser Fragestellungen wurden im Rahmen des „Stadtklima im Wandel [UC]<sup>2</sup>“ Projektes zwei 6 m lange Ausleger in etwa 42 m (10. Stock) und 64 m (16. Stock) Höhe an der Fassade eines insgesamt 85 m hohen Gebäudes im Zentrum von Hamburg installiert. Um detaillierte Informationen zur Turbulenz zu erhalten, werden an beiden Auslegern in 2 m, 4 m und 6 m Entfernung zur Fassade die drei Windkomponenten mit 20 Hz erfasst. Die Messungen werden seit August 2021 durchgeführt, sodass unterschiedlichste Anströmungsrichtungen des Gebäudes als auch zahlreiche synoptische Situationen von schwachem bis stärkeren Wind gemessen wurden.</p> <p>Der einzigartige Messdatensatz an einer realen Hochhausfassade liefert detaillierte Einblicke in das Windprofil sowie den Impulsfluss an Gebäuden in Städten. Dies ermöglicht die Untersuchung der aktuell in vielen LES Modellen genutzten Annahmen wie zum Beispiel des logarithmischen Windprofils an Fassaden. Darüber hinaus wird die im PALM‑4U Modell verwendete Parametrisierung für den Impulsfluss mit den Messungen verglichen. Die Form des Windprofils an der Fassade ist unter anderem von der Anströmungsrichtung, der Geometrie sowie der Messposition am Gebäude abhängig. Die Turbulenzintensität nimmt unabhängig der Anströmung in allen drei Komponenten mit größerem Abstand zur Fassade hin ab. Die Ergebnisse werden in Hinblick auf verbesserte Parametrisierungen in Modellen diskutiert.</p> <p> </p> <p><strong>Literatur:</strong></p> <p>Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, <em>J. Atmos. Sci.</em> 28, 181–189.</p> <p>Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S. (2015): The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 1539-1637, DOI:10.5194/gmd-8-2515-2015.</p>

2015 ◽  
Vol 8 (8) ◽  
pp. 2515-2551 ◽  
Author(s):  
B. Maronga ◽  
M. Gryschka ◽  
R. Heinze ◽  
F. Hoffmann ◽  
F. Kanani-Sühring ◽  
...  

Abstract. In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.


2015 ◽  
Vol 8 (2) ◽  
pp. 1539-1637 ◽  
Author(s):  
B. Maronga ◽  
M. Gryschka ◽  
R. Heinze ◽  
F. Hoffmann ◽  
F. Kanani-Sühring ◽  
...  

Abstract. In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.


2020 ◽  
Vol 42 ◽  
pp. e38
Author(s):  
Rayonil Gomes Carneiro ◽  
Camilla Kassar Borges ◽  
Alice Henkes ◽  
Gilberto Fisch

The present work had the objective to evaluate the development of the convective boundary layer in the Amazon region simulated by a high resolution Large Eddy Simulation model (named PALM model), for days representative for rainy and dry seasons. The study used data from the GOAmazon Project 2014/2015 (Green Ocean Amazon). Using data from radiosondes and Ceilometer as truth values, they were compared with the simulations performed through the PALM model. The results showed that, in general, the convective boundary layer cycle for the Amazon region was well represented by PALM model. It´s outputs has showed an overestimation of ≈ 35 m in a rainy day and an underestimation of ≈ 20 m in a dry day, both in development phase of the convective layer at late morning. It was also observed that the latent heat flux profile was higher than the sensible heat in the atmosphere, because it is a region with a lot of humidity, with the boundary layer responding rapidly to the maximum surface forcing.


2013 ◽  
Vol 20 (6) ◽  
pp. 1095-1112 ◽  
Author(s):  
A. Petronio ◽  
F. Roman ◽  
C. Nasello ◽  
V. Armenio

Abstract. In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier–Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.


Author(s):  
Jongwook Joo ◽  
Gorazd Medic ◽  
Om Sharma

Large eddy simulations over a NACA65 compressor cascade with roughness were performed for multiple roughness heights. The experiments show flow separation as airfoil roughness is increased. In LES computations, surface roughness was represented by regularly arranged discrete elements using guidelines from Schlichting. Results from wall-resolved LES indicate that specifying an equivalent sandgrain roughness height larger than the one in experiments is required to reproduce the same effects observed in experiments. This highlights the persisting uncertainty with matching the experimental roughness geometry in LES computations, pointing towards surface imaging and digitization as a potential solution. Some initial analysis of flow physics has been conducted with the aim of guiding the RANS modeling for roughness.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2773 ◽  
Author(s):  
Nan-You Lu ◽  
Patrick Hawbecker ◽  
Sukanta Basu ◽  
Lance Manuel

Severe winds produced by thunderstorm downbursts pose a serious risk to the structural integrity of wind turbines. However, guidelines for wind turbine design (such as the International Electrotechnical Commission Standard, IEC 61400-1) do not describe the key physical characteristics of such events realistically. In this study, a large-eddy simulation model is employed to generate several idealized downburst events during contrasting atmospheric stability conditions that range from convective through neutral to stable. Wind and turbulence fields generated from this dataset are then used as inflow for a 5-MW land-based wind turbine model; associated turbine loads are estimated and compared for the different inflow conditions. We first discuss time-varying characteristics of the turbine-scale flow fields during the downbursts; next, we investigate the relationship between the velocity time series and turbine loads as well as the influence and effectiveness of turbine control systems (for blade pitch and nacelle yaw). Finally, a statistical analysis is conducted to assess the distinct influences of the contrasting stability regimes on extreme and fatigue loads on the wind turbine.


Author(s):  
Sankalp Soni ◽  
Bakhtier Farouk ◽  
Charles N. Haas

Bio-terrorism events (like the 2001 anthrax attacks) accentuate the importance of countering these incidents. In order to develop reliable countermeasures for these events, it is essential to understand the associated transport processes. The transport processes involved pose challenges as they occur over wide ranges of spatial and temporal scales. CONTAMW, a multi zone indoor air quality and ventilation analysis program is used to predict the contaminant dispersal in an apartment building. Detailed simulation results and analysis of controlled release of propylene within a generic apartment building is presented. A zonal analysis is carried out for the entire apartment building (using CONTAMW) to obtain time histories of propylene concentration in different zones. The simulations provide the dispersion, transport and contaminant concentration within each zone of the apartment. This study also considers the effect of flow obstructions and ventilation rates on contaminant dispersal. The results are validated with the experimental results reported in Cybyk et al. (1999). We have also simulated propylene transport in the apartment with FDS, a large eddy simulation model.


Sign in / Sign up

Export Citation Format

Share Document